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§1. General discussion 

In this talk, we shall present an elementary study of 

eigenvalues in linear algebra. Very often in various branches of 

mathematics we may come across the problem of finding certain 

powers say Ak of a square matrix A. This comes up for example in 

the theory of Markov Chains, in the solution of a system of 

ordinary differential equations with constant coefficients, etc. 
k In general, for small k we can calculate A directly by 

multiplication, but this becomes complicated for large k or for a 

general value k. To find another approach, we first observe that 
k A can be calculated easily when A is a diagonal matrix. For 

example, if 

then 

0 

for any positive integer k. 

*Text of a talk given at the Workshop on Linear Algebra and its 

Teaching from 9 .10 September 1985 at the National University of 

Singapore. 
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However, since very often the matrix we come across need not be 

diagonal so this observation doesn't help us directly. Still if 

we think about it more carefully, we come to realise that even 

when A itself is not diagonal, but if it is similar to a diagonal 
-1 

matrix D in the sense that A - MDM for some non- singular 

matrix M, then we have 

k terms 

k and hence A can again be calculated easily. Now let us spend a 

little time and find out something about the equation A- MDM-1 . 

We will represent vectors in column form and write 

where mi is the i-th column of the matrix M. 

Then from A - MDM-l we have AM - MD and so 
' 

and therefore we have 

since M is non-singular, therefore mi ~ 0, and so we are led to 
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study the equation 

Ax- AX 
for x ,.& 0. 

Definition. Let A be an n x n matrix over the field of real 

numbers~. A real number A is called an eigenvalue of A if there 
n is a vector x (in column form) in~ , x ,.& 0, and such that Ax - AX. 

In this case x is called an eigenvector of A corresponding to the 

eigenvalue A. 

From Ax - AX, we have A(cx) - cAx - CAX - A(cx) for any 

other real number c and hence we can see that any non-zero 

multiple of an eigenvector is again an eigenvector corresponding 

to the same eigenvalue and the linear subspace generated by x is 

mapped into itself under A. In general a subspace X is called an 

invariant subspace of A if AX ~ X. 

Let us now return to the question of finding a diagonal 

matrix D and a nonsingular one M such that A- MDM-1 . Suppose we 

can find n eigenvalues A1 , ... ,A and the corresponding n 
. n 

eigenvectors m1 , ... ,mn are linearly independent, then 

M- (m1 , ... ,mn) is non-singular and letting 

we see from (1) that AM- MD and so A- MDM-1 . 

In §2 we shall see how to find the eigenvalues and 

eigenvectors. In §3 we shall study one very important particular 

case when A is symmetric and we shall find out that in this case 

D and M can always be found (at least in theory) and furthermore 
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-1 t 
M can be assumed to be orthogonal (i.e. M - M the transpose of 

M) as well. 

§2. Finding eigenvalues and eigenvectors 

A is our n x n matrix and we use I to denote the n x n 

identity matrix. We have 

Ax- AX 

o Ax - .>.Ix - 0 

o (A- .XI)x - 0. (2) 

Now (2) represents a system of linear equations with coefficient 

matrix A - .XI and the requirement x ~ 0 means that (2) has a 

non-trivial solution and hence we must have 

det(A - .XI) - 0 , 

where det denotes the determinant function. Therefore >. is a 

solution of the characteristic equation 

det(A - zi) - 0 (*) 

Conversely, if>. satisfies(*), then (2) will have a non-trivial 

solution x and hence Ax - .Xx, x ~ 0. Hence finding eigenvalues 

of A is equivalent to solving its characteristic equation(*). 

We see that (*) is a polynomial equation (in z) of degree n and 

so A has at most n eigenvalues (counting multiplicity). Once 

an eigenvalue is found, an eigenvector corresponding to it can be 

found by solving for x in (2) using standard methods from linear 

algebra. Let us illustrate this procedure in some detail in an 

example. 
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Example. Our matrix A f . S 

( _; -3 ] 1 

From (*) the characteristic equation is 

I 
2-z -3 0 . -2 1-z 

This simplifies to 2 - 3z - 4 - 0 z 

i.e. (z- 4)(z + 1) - 0 

and hence we see that there are two eigenvalues >.1 - -1 and >. 2 - 4. 

To find an eigenvector corresponding to >.1 - -1, we look at 

equation (2) for this case which is 

and solve for the vector 

x1 - x2 and so 

This equation reduces to 

is an eigenvector corresponding to >.1 - -1. 

Next we do the same for >. 2 - 4 and solve 
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which reduces to 2x
1 

- -3x2 and hence 

is an eigenvector corresponding to ~2 - 4. The matrix M will be 

given by 

M - [ i -~ ) , 
and using the formula for the inverse of a 2 x 2 matrix, we see 

that 

and we finally conclude from §1 that 

and hence 

[ 
2 -3ln [ 1 3] [(-l)n : l [: : l 

-2 1 1 -2 0 4 5 - 5 

1 
- 5 [ 

2(-l)n + 3(4n) 

2(-l)n - 2(4n) 
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§3, The spectral theorem for symmetric matrices 

We shall consider the n-dimensional Euclidean space Rn with 

its usual inner product (i.e. dot product) denoted by <,> so that 

for any two vectors x - in R , we have 
[ xx·.nl l' y - [ YYn

1 l n 

An X n matrix A- (aij) is called a symmetric matrix if we have 
n <Ax,y> - <x,Ay> for any x,y E R Since in general, we always 

have <Ax,y>- <x,Aty>, a matrix is symmetric if A At, where At 

is the transpose of A, i.e. aij- aji for all i,j 1, ... ,n. For 

the rest of this section A will denote a symmetric matrix. A 
-1 t matrix M is called an orthogonal matrix if M - M . For an 

orthogonal matrix M, we have MtM- I and since the (i,j) entry in 
t 

M M is <mi,mj> where as in §1, mi' mj denote the i-th and j-th 

column of M respectively, we see that the columns m1 , ... ,mn form 

an orthonormal basis of Rn. Conversely, if m1 , ... ,mn form an 
n orthonormal basis of R , then M- (m1 , ... ,mn) is an orthogonal 

matrix. Our main result in this section is the following. 

Spectral Theorem. Let A be a symmetric matrix, then there 

exists an orthogonal matrix M and a diagonal matrix D such that 

As a consequence, we see that A has n real eigenvalues and that 

there is an orthonormal basis of Rn relative to which the trans­

formation A is represented in diagonal form D. 
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We shall present two different proofs of this very important 

theorem based on two different ideas both of which are of 

independent interest. In Part I of the following, we shall take 

a geometric approach to obtain a characterisation of the 

eigenvalues of A in terms of a maximum-minimum property and this 

coupled with a little analysis and linear algebra will give us an 

inductive proof of the spectral theorem. In Part II an idea due 

to Jacobi in the numerical computation of eigenvalues will be 

studied and as a consequence we shall obtain a very simple and 

elegant proof of the spectral theorem. We need two important 

facts from analysis : 

Fact 1 A subset of the Euclidean space is compact if 

and only if it is closed and bounded. 

Fact 2 A continuous real-valued function on a compact 

set must attain a minimum at some point in this set. 

Part I 

n-1 Let S denote the unit n n-1 
sphere in IR , i.e. S -

{X € IRn : llxll - 1} where llxf-
n-1 <x,x>. Clearly S is closed 

and bounded and hence compact. Now consider the real-valued 
n-1 function f on S defined by f(x) - <Ax,x>, this attains a 

minimum at a point m
1 

say in Sn-l and this minimum value is 

>.1- <Aml,ml>. 

Claim. m
1 

is an eigenvector corresponding to the eigenvalue 

>.1' i.e. Aml - >.lml. 
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Proof. By using orthogonal decomposition, we can let 

where y is a unit vector in the orthogonal complement m1i (see 

figure). 

Int. 

Arn 1 

Consider now the unit circle 

~(0) - m1cos0 + ysinO, ~ s 0 s ~. 

The restriction of f on this circle f(~(O)) as a function of one 

variable 0 attains a minimum when 0 - 0 and so we have 

:o f (-y < o > > 1 - o . 
o-o 

(3) 

Now 

- <Am1cos0 + AysinO, m1cos0 + ysinO> 

2 2 - A1cos 0 + <Am1 ,y>sin20 + <Ay,y>sin 0 
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Therefore 

Hence from (3) we have ~ - 0 and therefore 

n-2 Now we apply a similar reasoning to the unit sphere S in the 
j_ 

(n-1)-dimensional subspace m1 and obtain 

and a corresponding unit eigenvector m2 . 
j_ 

a second eigenvalue A2 
Apply this again to the 

unit sphere in (m
1

,m
2

} we obtain A
3 

and m
3 

and so on by 

induction we then obtain all n eigenvalues A1 , ... ,An and 

corresponding unit eigenvectors m1 , ... ,mn which are mutually 

orthogonal. So M = (m1 , ... ,mn) is an orthogonal matrix and we 

have 
t 

A - MDM 

where D- [ A
1
·. 

0 

.] which proves the spectral theorem. 
0 • A 

n 

The above reasoning gives us the following characterization 

of the eigenvalues Al ~ A2 ~ ... ~An. 

Minimum Principle 

A - min <Ax,x> 
llxll-1 

and 2 ~ k ~ n. 
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As a simple application of the minimum principle, we can 

derive a very easy upper bound for the smallest eigenvalue ~1 . 

We just look for the smallest element in the diagonal of A, say 

this is aii' then we have ~1s aii. This may sometimes be useful 

when the size of A is large so that a direct computation of its 

eigenvalues is not practical, and we only need some numerical 

estimate on its smallest eigenvalue. For example if A is a 

100 x 100 symmetric matrix with a -1 in a diagonal entry, then we 

know without any work that A cannot have all eigenvalues 

positive. 

Supplement to Part one 

For practical purposes, the minimum principle is not very 

useful because of the dependence of the characterization of later 

eigenvalues on the eigenvectors of the preceeding ones. We shall 

now use the minimum principle to derive a different characteri­

zation. 

The Mini-Max Principle 

(1) ~l - min <Ax,x> 
llxll-1 

(2) For 2 s k s nand any collection of k-1 vectors v1 , ... ,vk-l 

we define a number a depending on v1 , ... ,vk-l by 
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Then ~k- { max }Q(v1 , ... ,vk-l) where the maximum is 
vl, · · · ,vk-1 

taken over all choices o,f v1 , ... , vk-l' 

Proof. Let ~k- { max }Q(v1 , ... ,vk_1). By minimum 
vl' · · · ,vk-1 

principle, we have 

and so 

Let us now take a fixed arbitrary choice of v1 , ... ,vk-l' We 

consider the vector 

where a1 , ... ,ak are chosen such that <x,v1>- ... -~x,vk-l>- 0 

2 2 
and a1 + ... + ~- 1. This is possible because <x,v1>- 0, ... , 

<x,vk_1>- 0 is a system of (k-1) linear equations ink unknowns 

(a1 , ... ,ak) and so a non-trivial solution can be found to satisfy 

2 2 
a1 + ... + ak- 1. Now that the conditions x~{v 1 ... ,v k-1 and 

llxll - 1 are satisfied, we ·check that 

<Ax,x>- <al~lml + ··· + ak~k~' alml + ··· + ~~> 

2 2 2 
- ~lal + ~2a2 + · · · + ~k~ 

2 2 2 
s ~kal + ~ka2 + ··· + ~k~- ~k · 

85 



Finally, since v1 , ... ,vk-l is any arbitrary choice, we therefore 

have 

Part II 

We shall give another proof of the spectral theorem based on 

a numerical method due to Jacobi. We begin with a simple fact 

Lemma. The set O(n) of n x n orthogonal matrices is 

compact. 

Proof. We shall realize O(n) as a closed and bounded set in 
2 

n 
~ and hence its compactness follows. First we observe that the 

2 
space of all n x n matrices can be identified with ~n because 

there are n2 entries for such a matrix. Therefore we can use the 
2 

norm in ~n to induce a norm on any n x n matrix B - (bij) be 

defining IIBII 2 

equivalent to 

2 Ibij" A simple calculation shows that this is 

Therefore for any ME O(n), we have 

IIMII 2 
- trace(MMt) - trace(!) - n 
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2 
and so O(n) is a subset of the hypersphere of radius /U in ~n. 

and hence O(n), is bounded. To see that O(n) is closed we take a 

sequence M. e O(n) such that M. ~ M, then we observe that M~ ~ M 
1 1 1 

and hence 

t t 
but MiMi- I and so MM -I, i.e., Me O(n). 

We shall now introduce the method to reduce a non-zero entry 

in the off-diagonal of a symmetric matrix A to zero, and of 

course, after all t~e off-diagonal entries are reduced to zero, 

we get a diagonal matrix. So let us now introduce a function to 

measure the deviation of any matrix from a diagonal one. 

Definition. For any matrix B - (bij)' define 

2 
4>(B) I b ... 

•. 1J 
1;o<!J 

Clearly B is a diagonal matrix if and only if 4>(B) 0. 

Theorem (Jacobi). 

Let A be a ~ymmetric matrix. If 4>(A) > 0, then there exists 

an orthogonal matrix M such that 

Proof. Since 4>(A) > 0, there is an entry, say a .. ;o£ 0, with 
1J 

i < j. Let M be the n X n matrix given by 
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i j 

1 

.1 
...... cos · 0 •.•... sin 0 

1 . 

.1 
sin 0 ••...• cos 0 

1 

1 

Then it is easily checked that MMt - I and so M is orthogonal. 

Now we just have to multiply out MAMt. If we let MAMt­

(b ), then the result is 
pq 

b - b -a -a p ~ i,j' q ~ i,j pq qp pq qp 

bpi - a .cosO + apjsinO - bip , p ~ i,j p1 

bpj a .sinO + apjcosO - b p ~ i,j p1 jp 

Now we see that 0 can be chosen so as to make bij - 0 (just solve 

this equation for 0) and with this choice of 0, a direct 
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computation shows that 

and hence 

Proof of the spectral theorem. 

A is our fixed symmetric matrix. We now consider the 

function f : O(n) ~~defined by f(J)- ~(JtAJ). f is then a 

continuous function and since O(n) is compact, f attains a 

minimum, say at Me O(n). 

Clai~. f(M) - ~(MtAM) - 0. 

Suppose f(M) > 0, let 

t 
D - M AM. 

Then D is symmetric and ~(D) > 0. Therefore by the theorem of 

Jacobi, there exists N e O(n) such that 

f(M) - ~(D) > ~(NDNt) 

- ~(NMtAMNt) 

- ~(MNt)tA(MNt)) 

- f(MNt) 

t But M,N e O(n), so MN e O(n) also, and this is a contradiction to 

the hypothesis that f(M) is a minimum. 

Therefore ~(t) - 0 so that D is diagonal. Since D - MtAM, 

therefore A - MDMt and the spectral theorem is proved. 
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