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The word "cryptography" derives from Greek and means 

"secret writing". Since ancient times, cryptographic methods 

have been in use in diplomatic and military contexts for the 

transfer of secret information. A quite simple cryptographic 

system is named after the Roman general Julius Caesar, by whom it 

was used. Nowadays cryptography has become important in 

commercial applications, such as electronic transfer of cash and 

computer files with limited access. Formerly cryptography could 

be considered as an art rather than a science, but more recently, 

mathematics and mathematicians have become increasingly involved 

in it. It appears that one of the most spectacular successes of 

the mathematical approach was the breaking of the ciphers used by 

the German High Command during the Second World War. Though the 

full story has not yet been revealed, this was apparently done by 

a group of mathematicians in England, among whom the name of Alan 

Turing stands out, using a specially built electronic machine 

which was one of the precursors of the modern computer. Turing 

is nowadays regarded as one of the founders of the abstract 

theory of computation. 
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Several branches of mathematics, such as probability, number 

theory and combinatorics, play a part in modern day cryptography 

but in this article we will describe only some very beautiful but 

simple applications of number theory. 

Modular arithmetic 

In this kind of arithmetic we start with a fixed integer 

(whole number) n > 0, the "modulus". We work with the numbers 

0,1,2, ... ,n-1. We introduce a type of addition on these numbers, 

consisting of ordinary addition followed by "reduction mod n", 

that is, taking the remainder left after dividing by n. This is 

called addition modulo n, or addition mod n for short. Thus if 

n- 11, 

5 + 2 = 7 (mod 11); 7 + 6 = 2 (mod 11); 9 + 2- 0 (mod 11) 

Multiplication is similar; it consists of ordinary 

multiplication, followed by "reduction mod n". Thus 

3 x 6 = 7 (mod 11); 7 x 7 = 5 (mod 11); 5 x 3 0 (mod 15). 

Thus in this kind of arithmetic the product of two non-zero 

numbers can be zero; however it is not hard to see that this 

cannot happen if the modulus n is prime. The usual laws of 

arithmetic, such as the associative and commutative laws of 

addition and multiplication, are satisfied here, and in fact, for 

the cognoscenti we can say that we have a commutative ring. (For 

a slightly different approach see C. T. Chong's article [1] .) 

Most important for us is exponentiation; if r is a positive 

integer, we define ar(mod n) to mean aa ... a (mod n) with r 
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factors a. 
4 

Thus, for example, 2 - 5 (mod 11). We have 

suppressed some mathematical details here, but it will suffice to 
23 say that in working out say 2 mod 11, we can do it in any way 

that seems reasonable, for example by working out 223 and 

reducing mod 11, or, better, as 

8 (mod 11). 

Thus we see one virtue of modular arithmetic - the size of the 

numbers does not get out of hand. 

A basic result is 

Fermat's Little Theorem (P. de Fermat, 1632-1690). If pis a 

prime and I~ a~ p-1, then ap-1 
= 1 (mod p). 

Public key cryptographic systems 

A public key cryptosystem is one which the encryption key or 

system is public knowledge, whil~ decryption requires some 

special piece of information only possessed by the receiver for 

whom the message is intended. This can enable a number of 

individuals to communicate conveniently and in mutual secrecy 

with a single receiver, for example. A good analogy is the 

following. Suppose everyone possesses an English-Hungarian 

dictionary but only one person A possesses a Hungarian-English 

dictionary. Then English messages can be sent to A by 

translating them into Hungarian. Although A can read these 

without too much difficulty, people would find it difficult or 

impossible to read each other's messages. It is not that there 

is any difficulty in principle in this, as the English-Hungarian 
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dictionary could be used in reverse. Rather, it is the time 

necessary which is prohibitive. (Hungarian speakers should 

modify this example appropriately). 

For our purpose we shall assume the messages to be sent are 

in numerical form, consisting of strings of integers between 0 

and 9. This can always be achieved by a simple rule such as 

A- 01, B- 02, .... Consider the following public key 

cryptosystem. Each participating institution (for brevity we 

refer to these as "banks") has assigned to it a "coding modulus" 

which will be a large prime p, and a "coding exponent", which 

will be an integer c with 1 < c < p-1 and such that c and p-1 

have no common factor except 1. These will be public knowledge 

and available in some kind of directory. To send a message x to 

a given bank we first break up x (which is a string of digits) 

into blocks x1 , x2 , ... in some preassigned way, so that for 

instance each block is less than p, and then send x
1
c, x

2
c, . . . 

(mod p), where c and p correspond to the bank in question. Thus 

if p - 11, c = 3 then instead of 3 5 5 2 7 we would send 5 4 4 8 2. 

To decrypt or read this message, the bank must find the 

"cube root" of each digit mod 11. This is easily done by making 

a table of cubes and using it backwards. However if p were very 

large, say with about 100 digits, such a table would be too big 

to store, let alone use. Thus this system appears very secure, 

in as much as not even the intended receiver can read it. 

However it is possible to find a "decoding exponent" d which the 

bank may use, as follows. Since c and p-1 have no common factors 

other than 1, there exist integers d and x such that 

cd + (p-l)x - 1. (*) 
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Then mod p we have, for 1 ~ y ~ p-1, 

1 
y- y 

by Fermat's Little Theorem. Thus the message can be decrypted by 

raising its terms to the d-th power (mod p). For example when 

p- 11, c- 3, we have 3.7- 10.2- 1, sod- 7. We might thus 

supply the receiving bank with the appropriate value of d and· 

hope to have a good cryptosystem. This hope is without 

foundation, however, as the integers d and x in (*) can be 

calculated from c and p, which are known, quite quickly using the 

Euclidean Algorithm, even if p is very large. Thus an interloper 

in possession of a suitable computer could break this system 

without difficulty. 

The beautiful idea put forward by Rivest, Shamir and Adleman 

a few years ago was similar to the above, except that the coding 

modulus p is replaced by a coding modulus m of the form m = pq, 

where p,q are different large primes. "Fermat's Little Theorem" 

now has the form 

If p,q are different primes, 1 ~a< pq, and a is not equal 

top or q, then a(p-l)(q-l)- 1 (mod pq). 

This time the coding exponent c should satisfy 

1 < c < (p-l)(q-1), and should have no factors other than 1 in 

common with (p-l)(q-1). For example we might have m 

11,388,301,907 and c- 257, though in practice the primes p,q 

should have about 100 digits. 

Again coding or encryption consists of raising to the c-th 

power mod m. This can be carried out relatively quickly on a not 

particularly large computer. The decoding exponent d is given by 
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finding integers d,x such that 

cd + (p-l)(q-l)x- 1 (**) 

The point now is that although m and c are publicly known, the 

primes p,q themselves are known only to the bank. The latter can 

thus readily solve(**), finding d, and decrypt messages sent to 

it without difficulty. The potential interloper wishing to solve 

(**) needs to know (p-l)(q-1) and thus must first factorize m 

into its prime factors. The reader considering the m given above 

will begin to suspect that this is a very serious obstacle. 

Indeed, using the most sophisticated factorization techniques and 

the largest computers available, finding the prime factors of a 

number obtained by multiplying together two large primes (with 

about 100 digits each, say) would take much longer than the age 

of the universe. 

Again, there is no difficulty in principle in factorizing a 

number n, as trial division by 2,3, ... will eventually work. The 

point is that there is not enough time to do it that way, and 

other factorization methods are not significantly better. Thus 

the Rivest-Shamir-Adleman system is at present completely secure. 

A few remarks are in order. Firstly, it is known that 

decrypting the RSA system is equivalent to factorizing m. In 

other words, there is no trick which will obviate the 

factorization problem. Secondly, no quick factorization method 

is known, and it seems to be widely believed that factorization 

is intrinsically complex, in that no rapid factorization method 

can be devised. However this has not been proved. It is 

entirely possible that someone will devise a new method which 

will render the RSA system useless. If this comes about, 
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however, it will have to result from a new mathematical insight. 

Easy estimates show that present methods will never be adequate, 

however much computing power becomes available, since the latter 

is limi.ted by physical constraints such as the number of atoms 

in the universe, the speed of light, etc .. 

It is even possible that the above mathematical breakthrough 

has taken place! Research in the U.S.A. on prime numbers and 

factorizing, which until recently was regarded as one of the most 

pure and esoteric branches of mathematics, is now classified and 

subject to the scrutiny of the U.S. National Security Agency. 

Obviously, in order for the above system to be in widespread 

use, a good supply of large primes is needed. For some 

information on prime testing and finding large primes in spite of 

the complexity of the factorization problems, see [1]. I 

understand that the time taken to encrypt messages remains a 

practical obstacle to the widespread use of the RSA system, as 30 

seconds is considered a long time in some contexts, but work is 

proceeding on the development of special purpose chips. 

Key word interchange 

Many cryptographic systems have the feature that a secret 

key word must be in possession of both the sender and the 

receiver in order for messages to be transmitted back and forth. 

Acquisition of the key word by an interloper allows him to break 

the system and read the messages. Thus these are not public key 

systems. The hidden snag is the following. How can the keyword 

be transmitted from one to the other in the first place? 
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Obviously this itself needs some encryption system. Once again, 

modular arithmetic can play a role. 

Now it is known that if p is a prime, then there exists a 

number a with 1 s as p-1, such that as k goes from 0 to p-1, the 
0 1 2 • p-2 

numbers a - 1, a, a, ... ,a run over the numbers 1,2, ... ,p-l, 

each appearing once. Such a number a is called a "primitive root 

mod p". From the following table we see that 2, 6, 7, 8 are 

primitive roots mod 11, while 3, 4, 5, 9, 10 are not. The 

numbers displayed on each row are the powers (mod 11) of the 

numbers in the left hand column. 

Exponent 

Number 0 1 2 3 4 5 6 7 8 9 10 

2 1 2 4 8 5 10 9 7 3 6 1 

3 1 3 9 5 4 1 3 9 5 4 1 

4 1 4 5 9 3 1 4 5 9 3 1 

~ 1 5 3 4 9 1 5 3 4 9 1 

6 1 6 3 7 9 10 5 8 4 2 1 

7 1 7 5 2 3 10 4 6 9 8 1 

8 1 8 9 6 4 10 3 2 5 7 1 

9 1 9 4 3 5 1 9 4 3 5 1 

10 1 10 1 10 1 10 1 10 1 10 1 

The distribution of primitive roots appears to be not very well 

understood. It is known that one can always find a primitive 
m+l root mod p that is less than 2 log p, where m is the number of 

distinct prime divisors of p-1, but experience suggests there is 

usually one much smaller than that. 
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Now fix a prime p and a primitive root a mod p. Thus, as x 

from 0 p-2, 
X run from 1 to p-1, in runs to the numbers a (mod p) 

some order. That is, ifl ~ y ~ p-1, the equation 

X 
a y (mod p) 

has a unique solution for x in the range 0 ~ x ~ p-2. Finding x 

is reminiscent of taking logarithms to the base a, and so this is 

called the "mod p logarithm problem". In principle this poses no 
X difficulty. To solve 6 = 5 (mod 11), we can simply search 

through the above table and find x- 6. However if p is large 

the scale of the problem renders this approach infeasible. There 

is a more ingenious and faster method due to Adleman (see [2], 

but even this is too slow for practical implementation when p is 

large (say around 200 digits). Like the factorization problem, 

the mod p logarithm problem is thought to be intrinsically 

complex, in that no rapid method exists which will solve it in a 

reasonable amount of time. But again, this has never been 

proved. 

Now we return to the problem of interchanging a key word, or 

more precisely, of putting a common keyword into the possession 

of two potential communicators, traditionally known as Bob and 

Alice. We may imagine they are in a room with several other 

people, and may only communicate by writing on a large 

blackboard. First they choose a large prime p and a primitive 

root a mod p, and write them on the blackboard. Then Bob thinks 

of an integer B between 0 and p-2, and likewise, Alice thinks of 

A. Bob works out aB (mod p) and writes it on the blackboard. 
B A Alice works out (a ) = C (mod p) and makes a note of it. Next 

A Alice works out a writes it on the blackboard, and Bob works 

out (aA)B = (aB)A = C (all mod p). Now both are in possession of 
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B A C. The spectators know a, a and a , but to find A or B, and 

hence C, they must solve a mod p logarithm problem. 
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