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1. Introduction 

A perfect elimination ordering [1] of a graph G = <V(G),E(G)) is an ordering 
v1, v2, ......... vn of V(G) with the property that for each i, j and k, if i < j, i < k, 
and vk ,vi E N [ vi ] then vk EN [vi ] ,( where N [ v] denotes the set of all vertices of 
V(G) adjacent to v). Rose [ 1] has shown that a graph admits a perfect elimination 
ordering if and only if it is chordal, in the sense that it does not contain any cycle 
of length greater th,an three as an induced subgraph. 

The concept of a transitive-orientation of a graph G as defined below bears a very 
close resemblance to that of a perfect elimination ordering of G: 

For each graph G, we shall denote by G* a directed graph whose underlying graph 
is G. Let u,v be elements of V(G). The uv or vu will denote the undirected edge 
joining u and v in G and the ordered pair (u,v) is used to denote the directed edge 
from u to v in G*. The graph G* is said to satisfy the transitively orientable(T-0) 
condition if (x,y) is in E(G*) whenever there is a directed path from x toyinG*. 
Equivalently, G* satisfies the (T-0) condition if (x,z) is always in E(G*) whenever 
(x,y) and (y,z) are in E(G*) for some y in V(G). The graph G is said to be {T-O) if 
some G* satisfies the (T-O) condition. 

The resemblance between the concepts of a perfect elimination ordering and a 
transitive-orientation of G can be seen from the pictorial descriptions as given in 
Fig. 1. In the figure, the lines joining the vertices indicate adjacency, and the wavy 
lines are forced by the straight lines. 

The main purpose of this paper is to find a way to decide the transitive 
orientability of a graph. 

Figure 1 
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2. Factorization and Extensions of a Graph 

Let G be a graph. LetT be a non·empty subset of V(G). The set Tis said to be a 
fair subset of V(G) if, for each u in V(G)-T, either N[u] n T = ¢J or N[u]:) T. 
Sometimes we simply say that Tis fair in G to mean that Tis a fair subset of V(G). 
Let H be a subgraph of G. Then H is called a fair subgraph of G if V(H) is fair in G. 

Let G be a graph. Let H be a fair induced subgraph of G. The factor graph of 
G by H denoted as G/H is defined as follows: 

V(G/H) = (V(G)- V(H)) u t c} where cis a new vertex not in V(G); 

E(G/H) = { xy E E(G) I x,yE V(G)-V(H)} u 
{ uc l uE V(G)- V(H) and N(u) n V(H) = ¢J f. 

1 ntuitively speaking G/H is obtained form G by identifying all the vertices of H 
into the new vertex c. Evidently, G/H is isomorphic to some induced subgraph 
of G. 

Next, let G and H be graphs and let a be any fixed vertex in V(G). The extension 
graph of G by H via vertex a( (denoted by G(aH)), is defined as follows: 

V(G(aH)) = (V(G)- {a} ) u V(H), (assuming that V(G)n V(H) = ¢) i 

E(G(aH)) = E(G- a) u E(H)u {uv I uaE E(G) and vEV(H)}. 

It can easily be seen that G(aH)/H is isomorphic to G. 

A vertex sequence (v
0

, v 
1 

, •..... ,vm) in G is called a forcing sequence if for each 
i = 0, 1, ... m- 1, v v; + 1 is in E(G); whereas for each i = 0,1, ..... , m- 2, v; v; + 2 is 
not in E(G). (Note.that v; may be the same as v; +2 }. The length of such a sequence 
is defined to be m+1 (i.e. the number of terms in the sequence). 

We may now define a binary relation -von E(G) as follows: 
For each ab, cd in E(G), we put 

ab"' cd if and only if there exists a forcing sequence (v0 ,v1 ...•• ,Vm) with 
v0 =a,v 1 =b,vm_1=candvm=d. 

It is easy to see that such a relation is an equivalence relation. Moreover, for each ab 
in E(G), we shall denote by Sabthe equivalence class containing ab. We say that ab is 
a consistent edge if for any xy in Sab , the lengths of all forcing sequences of the 
form (a, b, .... x,y) are either all odd or all even. 

3. Some Basic Lemmas 

The following lemmas will be useful in the sequel: 

Lemma 1. A graph is (T-0) iff each of its components is so. 
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Proof Straightforward. 

Hence we may, from now on, assume that all the graphs under consideration are 
connected, unless otherwise stated. 

Lemma 2. All bipartite graphs are (T-0). 

Proof Let G be a bipartite graph where the two parts are A and B. We then turn 
G into a directed graph G* by putting E(G*) = { (u,v) 1 uv E E(G) and u EA}. 
It is then clear that G* has the (T-O) condition. o 

Corollary. All trees are (T-0). 

Lemma 3. A graph G is (T-0) iff all induced subgraphs of G are (T-0). 

Proof The sufficiency is clear as G is an induced subgraph of itself. To prove the 
necessity, assume that G is (T-0) and let H be any induced subgraph of G. Let G* 
be an orientation of G satisfying the (T-0) condition. Then H, as an induced 
directed subgraph of G*, provides a required orientation of H with the (T-0) 
condition. o 

Note that G may not be (T-O) even if all of its proper induced subgraphs are 
(T-0). The following graph is one such example. 

Figure 2 

Lemma 4. Let G be a graph and aEV(G). Let H be a graph without edges. Then G 
is (T-O) iff G(aH) is so. 

Proof It is easy to see that G is an induced subgraph of G(aH). Hence G is (T-0) if 

G(aHl is so. 

Conversely, assume that G is (T-0). Let G* be any orientation of G satisfying the 
(T-O) condition. We then obtain an orientation G(aH)* of G(aH) by putting: 

E(G(aH)*) = { (u,v) I u,vEG- a and(u, v)E E(G*)} u 
{ (u,v) I u E H and (a,v) E E(G*)} u 
{ (u,v) I vEH and (u,a)EE(G*)}. 

Then it is easy to see that G(aH)* satisfies the (T-0) condition, as required. o 
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Lemma 5. Let H be a fair induced subgraph of a graph G. Then G is {T-O) if and 
only if G/H and H are both (T-0). 

Proof. Assume first that G is (T-0). Then asH is given to be an induced subgraph 
of G and since H is fair. G/H is isomorphic to an induced of G, we see by Lemma 3 
that both Hand G/H are (T-0). 

Conversely, assume that both Hand G/H are (T-0). Then they can be orientated 
to yield directed graphs H* and (G/H)* respectively, both satisfying the (T-0) 
condition. We may then obtain an orientation G* of G by putting; 
E(G*) = E(H*) u { (u,v) I u,vEG-H and (u,v)E E((G/H))} 

u { (u,v) I u E G-H, vE H, and (u,a) E E((G/H)*)} 
u \ (u,v) I u E H, v EG-H, and (a,v) E E( (G/H*) ) , 

where a is the new element in G/H not in G. 

It is then easy to check that G* satisfies the (T-O) condition, as required. o 

Corollary. Let G, G' be graphs with disjoint vertex sets. If G and G' are both 
(T-0), then G(aG') is (T-O) for any a in V(G). 

LetS be an equivalence class of E(G) under the equivalence relationrv as defined 
before. We shall denote by < S > the subgraph of G as defined below: 

V( < S >) = l v E V(G) I v is incident with some members inS} ; 
E(< S>) = S. 

It is clear that < S > is connected. Also, as the relation rv is an equivalence 
relation on E (G), we may modify the definition of consistent edges as follows: 

Let S be a subset of E(G) which is an equivalence class of edges under rv. Let 
ab E S. It is easy to see that ab is consistent if for some xy in S (in fact we can 
just take xy = ab), the lengths of all forcing sequences of the form (a, b ........ xy) 
are either all odd or all even. The setS is said to be consistent if it contains at least 
one consistent edge. It is easy to see that if S is consistent then every edge in 
S is also consistent. 

Lemma 6. Let G be a connected graph. Let S be an equivalence class of edges 
under rv . Then V( < S > ) is fair. 

Proof. If V( < S)) = V(G), then the result is true by definition. Hence suppose 
that V( < S >. ) is a proper subset of V(G). Consider any vertex u in V(G) - V( < S > ) 
such that N [u] n V( <S>) f.¢. Hence uv is in E(G) for some v in V( <S> ). Let w 
be an element of V( < S >).Then there is a forcing sequence (v, x 1 , x2 , . . . • Xm, w) 
with vx 1 , xi xi+l• xmw E S fori= 1, 2, .... m-1. Then (u,v,x1 ) cannot be a forcing 
sequence since u is not in V( \S) ). Hence ux1 is not in E(G). Also (u,x 1, x 2 ) 

cannot be a forcing sequence since u is not in V( < S> ). Hence ux2 is in E(G). 
Proceeding with the argument, we finally concluded that (u, Xm , w) cannot be 
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a forcing sequence since u is not in V( ( S) ). Hence uw is in E(G). Note that 
u and ware chosen arbitrarily. Hence N[u] ::::> V( ( S>) and so by definition V(<S>) 
is fair, completing the proof. o 

Lemma 7. Let G be a connected graph. LetS be an equivalence class of edges under 
"' . Let u, v, w be elements of V( <S> ) and uv, vw be elements of E(G)-S. Then 
uwE E(G) implies that uw ~ S. 

Proof Suppose that uw is in E(G). Partition the neighbourhood of v into two 
classes: 

A 1 = { x E V (G) I vx E S } 
Az = { y E V(G) I vy E E(G)-S } . 

A 1 is not empty since vis in V( <S>) and is thus incident with some edge inS. 
A 2 is not empty since u, w are in A 2 . 

Note that A 1 n A 2 = 4> • For every x in A 1, and every y in A 2 ,(x,v,y) is not 
a forcing sequence, since vy is in E(G)-S and xv is in S. Hence we have established 
the following 

Claim. xy is in E(G) for each x in A 1 andy in A 2 . 

We next prove that uw is not in S. Assume to the contrary that uw is in S. Let 
x 1 E A 1 • Then there exists a forcing sequence (v0 ,v 1, ••• ,vP_1, vP ) from vx1 to 
uw (since vx 1 "' uw), with v0 = v, v1 = x 1 ,vP_,= u, vP = w. 

Let k be the largest integer such that vk is not in A 2 . Certainly k exists and 
1 <; k < p- 2. Notice that (vk , vk+l, v) is not a forcing sequence as vk + 1 v is in 
E(G}-S. Hence vk v is in E(G). Also since vk is not in A2 , we must have Vk in A 1 . 

Now as Vk is in A 1 and vk+2 is in A 2 , vk Vk+2 is in E(G). This contradicts the 
existence of (Vk ,vk+l ,vk+2 ) as a forcing sequence. Therefore the assumption that 
uw E S is false, completing the proof. o 

Lemma 8. Let G be a connected graph. Let S be an equivalence class under"' . 
Suppose V( < S >) = V(G). The G-S is disconnected. 

Proof. If E(G) = S, the result is clear. Hence suppose that there is an edge uw 
in E(G)- S. 

Let M = { v E V(G) I there is a path (u 0 , u1 , • . . Up ) from u to v in G with 
u,0 =u,up=v andukuk+1 EE(G)-S fork=0,1, ... p-1 }. 

To prove the results, it suffices to show that M is a proper subset of V(G). To do 
this, we partition the neighbourhood of u into two classes as follows: 
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A1 = { X E V(G) I ux E s } I 
A 2 = { y E V(G) I uy E E(G)-S} 

Then A1 is non-empty since u is in V(G) = V( < S > ). Also A2 is non-empty as 
w E A2 . For every x in A, , and every y in A2., (x,u, y) is not a forcing sequence, 
since uy is in E(G)-S and xu is in S. Hence xy is in E(G). By Lemma 7, we have 
xy $ E(G)-S as uy is in E(G)-S and xu is inS. This shows that xy is inS. 

Claz"m. M n A
1 

= ~ . 

Indeed, let v be any element of M. Then there exists a path (u 0 ,u1 , ••• ,up ) from 
u to v with u0 = u, up= v and Ui Ui+l E E(G)- S fori= 0, 1, ... , p-1. Suppose 
to the contrary that v E A1 . Then uv E S. Hence uup-l E S by Lemma 7. 
Again uuP _2 E S by Lemma 7. Continuing the argument, we would eventually 
obtain uu1 E S, a contradiction. Hence M n A1 = ¢, as claimed. 

By the Claim, it is clear that M is a proper subset of V(G), as required. o 

Lemma 9. If S is any equivalence class under rv, then every component of E(G) - S 
is fair. 

Proof Let M be a component of E (G) - S. Let x be a vertex not in M with 
N [x] n M =I~ , say y E N [x] n M. Then for each z in M, there exists a path (u

0 
,u1 , 

.. Up ) in M with uo = y, Up= z. Since x!f M, we have xu0 E S. Then (x, uo , u1 ) 

is not a forcing sequence. So xu1 E E(G). By Lemma 7, xu1 ES. In like manner, 
we can prove that xui E S for i = 2, 3, .... ,p. So xz E S, which implies that z E 
N [x]. Hence M is a subset of N [x], as required. o 

Corollary. LetS and S' be two equivalence classes of edges in a graph Gunder"'. 
Then V( <S> ) t- V( <S'> ). 

Proof Suppose to the contrary that V( < S> ) = V( < S'> ). Consider the induced 
subgraph H of G with vertex set V( <S> ). Then V ( <S> ) = V( <S'> ) = V(H), 
SUS' c E(H) and S n S' = ~- But H-S is not disconnected since V( <S'>) = V(H). 
This contradicts Lemma 8. o 

Lemma 10. Let G be a connected graph. Let S be an equivalence class of edges 
of G under under rv. Then <S > is (T-O) if and only if Sis consistent. 

Proof Assume that Z S) is (T-0). Let abE E( <S>) = S and let <S > * be an 
orientation of < S> satisfying the (T-0) condition. Without loss of generality, 
assume that (a,b) E E( < S> *). Take any xy inS. Suppose that (x,y) is in E( < S> *). 
Consider any forcing sequence of the form (a, b, .. x, y ,). This sequence must be of 
even length for if (v k , vk + 1 , v k+2 ) is any segment of the above forcing sequence, 
then we have: 

(vk , vk+l) E E( <S> *) ~ (vk+2, vk+l) E E( <S > *). 
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Hence if (x,y) is an edge of <S> *,then all forcing sequence of the form (a,b, .•• ,x,y) 
are of even length. Similarly, if (y,x) is an edge of < S ), *,then all forcing sequences 
of the form (a,b, .. ,x, y) are of odd length. Therefore, by definition, <S> contains a 
consistent edge ab, and is so consistent. 

Conversely, assume that S contains one consistent edge, say ab. To show that <S> 
is (T-0), we need to give an orientation on < S > satisfying the (T-0) condition. To 
do this, first put (a,b) in E( <S> *). Then for xy inS, put (x, y) in E ( (S) *) if there 
is one forcing sequence of even length of the form (a, b, . . . , x. y) Otherwise, put 
(y, x) in E( <S> *). This orientation is well defined as ab is a consistent edge. With 
this orientation, we shall show that ( S )* satisfies the (T-0) condition. 

Claim1. lf(x 0 ,x1 ),(x 1 ,x2 ) E E(<S>*)thenx 0 x 2 E E( <S>). 

Indeed, suppose to the contrary that x0 x2 E E( <S> ). Then(x 0 ,x 1 ,x 2 ) is a 
forcing sequence. By definition, there exist forcing sequences of even length of the 
form P = (a, b, ... , x 0 , x 1 ) and ex = (a, b, ... , x 1 ,x 2 ) . Now consider the forcing 
sequence p derived from p by adding just one term x 2 at the end, namely p' = 
(a, b, ... x 0 ,x1 , x 2 ). P • is a forcing sequence from ab to x1 x2 of odd length and 
ex is a forcing sequence from ab to x1 x2 of even length. This contradicts the 
condition that ab is consistent. Hence x 0 x 2 $ E( <S> ) is not possible, establishing 
Claim 1. 

Indeed, by Claim 1 x0 x 2 E E( <S> *). Suppose to the contrary that (xo ,x2) 
E E( < S> *). Then (x 2 , x 0 ) E E ( < S> *). As x 0 x 1 rv xo x2 , there exist a forcing 
sequence (vo, v1, ... , Vp_1, Vp ) with v0 = x 0 , v1 = x1 , vP_1 = xo, Vp = x 2 • As 
(v 0 , v1 ),(vP , Vp-1 ) E E( < S > *),we see that p must be even. Furthermore, 
(vi , vi_1 ), (vi , v i+1) E E( <S> *)if i = 2, 4, 6, ... , p- 2. (See Figure 3). 

vo = xo v1 = x, 
o---+---o -o-

vp-2 

---o-----~-o-+-- o 

vP_1 = x Vp = X2 

Figure 3. 

We shall prove by induction on i the following proposition: 

P(i) : (v1 , v P-2 i) and ( v p-2 i.1 , v 1 ) E E( < S > *) 
where i = 0,1 ,2, ...... , p/2-2. 

P(i) is evidently true for i = 0. Asume that it is true fori= k and consider P(k + 1 ). 
By induction hypothesis, (v1 , vP_2k ), (vP_2k_1 , v 1 ) E E( < S > *). As 
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VP_2k_21vp-2k_1)1 (vp-2k_11v1) E E( \S >*)1 by Claim 11 v 1 vp-2k-1 E E( <S> )I since 
we have (v 1 I v p-2k) E. E( <S > *). This contradicts the fact that (vo , v1 1 ••• , Vp ) 

is a forcing sequence. Hence we must have (v 1 I v p-2(k+1 l ) E E( < S > *). Similarly 
(v p-2(k+1)-1 , v1 ) E E( s )* which prove the validity of P(k + 1). Hence 
P(i) is true for all feasible i and in particular (v1 , v 3 ) E E (.< S ~ *), a contradiction. 

This establishes Claim 2. 

By Claim 2, we see that < S > * is (T-O) as required. o 

4. A characterization. 

We are now in a position to give the following characterization for (T-0) graphs. 

Theorem 11. Let G be a graph and S be an equivalence class of edges of G under 
rv. Then 
(i) When E(G) = E( <S> ), then G is (T-0) iffS is consistent. 
(ii) When E(G) :f: E( <S> ) and V(G) = V( < S > ), then G is ( T-0) iff for any 
component H of G - S, both Hand G/H are (T-0). 
(iii) When V(G) f. V( < S> ) , then G is (T-0) iff Hand G/H are (T-0) where H is the 
induced subgraph with vertex set V( <S> ). 

Proof (i) follows from Lemma 10. 

To prove (ii)1 let H be any component of G-S. By Lemma 91 H is fairinG and so 
by Lemma 5, (i i) follows. 

To proof (iii), we have by Lemma 6 that <S> and hence His fair in G. Hence (iii) 
follows from Lemma 5. o 

5. A few final remarks. 

To end this paper, we wish to make the follow ng remarks: 

( 1) From Theorem 11, we see from (i) that to check the transitive orientability 
of the graph Gl we need only to decide the consistency of S. Moreover, (ii) 
and (iii) help us to reduce G to simpler graphs. 

(2) If the graph G is (T-0)1 then 2 ~ N ~ 2k , where N is the total number of 
different orientations on G satisfying the (T-0) condition and k is the number 
of equivalence class of edges in G under rv. This is clear since each equivalence 
class S under rv has exactly two orientations with the (T-0) condition if Sis 
consistent and hence N is at most 2 k . The value of N is at least 2 for each 
(T-0) orientation gives rise to another by reversing the direction of each arc. 

(3) In [2] I strongly chordal graphs are characterized by forbidden subgraphs. It 
will be interesting to know if (T-0) graphs can also be characterized likewise. 
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(4) Our arguments presented in this paper can be naturally extended to {T-0) 
multigraphs. It is easy to see that a multigraph is (T-O) iff its underlying 
simple graph is so. 
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