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The theory of numbers has long been considered to be among the purest of pure 
mathematics. Gauss ( 1777- 1855) called it the queen of mathematics. Hardy ( 1877 
--1947) took pride in the belief that his best contributions in mathematics, namely 
analytic number theory, had no practical applications whatsoever. In the history of 
mathematics, number theory may justifiably claim to have as its devotees many of 
the best mathematicians. Fermat (1632 - 1690), Euler (1670- 1743), Gauss, 
Riemann (1826 -1866), Eisenstein (1823 -1852), Dirichlet (1805 -1859), Hilbert 
(1862 - 1943) were men who shaped modern mathematics and who could count 
number theory among their most impressive achievements. Closer to our times, we 
have Art in ( 1898- 1962), Wei I ( 1906 - ) and Serre ( 1926 - ) on the list of leading 
mathematicians who have spent a great proportion of their energy in the investiga­
tions of number theoretic questions. 

The basic building blocks of numbers (i.e. integers) are the prime numbers. A 
prime number is a positive integer greater than 1 which is divisible only by 1 and 
itself. For example, 2, 3, 5, 7, 11, 13 are prime numbers. So is the number 2 44497 

-1. This number has 13,395 digits and was proved to be a prime only in the year 
1979 using a CRAY-1 supercomputer. It has been known for a few thousand years 
that every number can be factorized into a product of powers of primes, the 
so-called prime decomposition. Such basic facts are now taught to school children 
at an early age. Euclid (end of third century B.C.?) already showed that there are 
infinitely many primes (i.e. for every positive number there is a larger number which 
is a prime). Still,questions about prime numbers abound. For example, how are the 
prime numbers distributed? In other words, for a given positive number x, how 
many primes are there which are less than x? The Prime Number Theorem answers 
this by giving an asymtotic estimation. Yet attempts by Riemann to answer this 
question raised the intriguing problem of studying the distribution of the zeroes of 
the Riemann zeta function. This leads to the Riemann hypothesis, considered today 
to be perhaps the most important unsolved problem in mathematics. There is another 
example: Is every even number (numbers divisible by 2) greater than 2 the sum of 
two primes? This was conjectured by Goldbach ( 1690-1764) and, although con­
siderable progress has been made, no solution of the problem is in sight. One more 
example: For a prime p greater than 2, how many triples (x,y,z) are there which 
satisfy the equation xP + yP = zP ? Fermat believed that they were none, and 
thought he had a proof. Today many think that his proof was wrong. It was not 
until 1983 that a proof was given ( Faltings ( 1954- ) ) showing that there are at 
most finitely many such triples (for p = 2 it is well-known that there are infinitely 
many such triples). 

With the · advent of modern ultra high speed digital computers, the usefulness of 
number theory in practical applications emerged unexpectedly within the last ten 
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years. The applications center around the subject of cryptography, the study of 
secure communication. The objective is to encrypt messages to make decoding 
impossible, using the idea of public-key crypto system. It is based on the fact that 
given a mathematical function, for example the function f(x,y) = xy (product of the 
numbers x and y), going from the input to the output is easy (from (x,y) to xy), 

whereas going from the output to the input is difficult (to 'decode' the pair (x,y) 
from xy is not always possible). Let us take the example of prime numbers under 
discussion here. Although mathematically speaking there are algorithms to 
determine where a number is prime, some of these may in practice be very difficult 
to carry out. The most simple-minded algorithm is that of factorization. Given a 
positive number n, to decide whether n is a prime number we simply divide n 
successively by the numbers less than n and greater than 1. If there is one such 
number which divides n without leaving a remainder, then n is clearly not a prime. 
We can add a little bit of sophistication into this algorithm. Narre ly it is not 
necessary to test the primality of n by the division of numbers less than n. Indeed it 
is sufficient to test n by dividing it by numbers not exceeding the square root. The 
reason is that if n has a factor greater than~ and less than n, then it has a factor less 
than Jn. Now until 1979, it would require 10668° years of computer time to 
decide that 244497 -1 is a prime number using this algorithm. Clearly it is a very 
impractical and primitive method of primality testing. Hence given that large prime 
numbers are difficult to detect, one may take two 100 digit prime numbers, for 
example, and multiply them to obtain a 200 digit number n. The process of multi­
plying two numbers to obtain n is straightforward, whereas to factorize n into its 
prime decomposition may not be practically feasible. One can then exploit this fact 
to send messages by encoding them into something associated with n, a number 
which is made public. Anyone wishing to unscramble the messages would need to 
know tha prime factors of n, which the receiver keeps to himself. Thus the sender 
and the receiver never need to exchange the secret key for cipher, and yet messages 
are transmitted. 

It follows that factoring a number is of tremendous practical importance. If one 
could devise a fast computer algorithm for this, then numbers previously thought to 
have a large prime factorization, and therefore used for public-key crypto system 
purposes, may have to be discarded for reason of security. If, on the other hand, 
there is no fast and efficient method for the factorization of numbers, then 
government and commercial organisations could safely use numbers with large prime 
factors for encryption purposes. It is interesting to note how problems of very 
practical nature rely on very pure and abstract mathematics for answer. 

While fast algorithms for prime factorization are at the moment still unknown, the 
closely-related question of primality testing is not. Let us elaborate on this 
apparently contradictory remark. It is easy to see that knowledge of the prime 
factorization of a number implies knowledge of the primality of the number. The 
converse is not true. It is indeed possible to decide that a number is a composite 
(i.e. not a prime) without factoring. This fact relies on a result called Fermat's Little 
Theorem which is taught in every introductory course in group theory and number 
theory. We begin the discussion with a quick review of modular arithmetic invented 
by Gauss. 
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Fix a number n. Two numbers a and b are said to be congruent modulo n if their 
difference is divisible by n. We write this as a=: b (mod n). Congruent numbers can 
be added and multiplied, as in ordinary arithmetic. Thus we have, given 
a:: b (mod n) and c::: d (mod n), 

a+ c := c + d (mod n) and ac := bd (mod n). 

The advantage of considering congruence relation over ordinary equality is that it 
reduces large numbers to relatively small ones so that calculations within the limits 
of large computers can be carried out. Suppose that n = 8191. Then for a = 0, 1 ,2 .. 
8190, we have a= a (mod 8191 ). However for a= 8191, we clearly have 8191 = 0 
(mod 8191), and also 8192 = 1 (mod 8191),... ,16381 ~ 8190 (mod 8191). This 
means that there is a cycle of length 8191, so to speak, where the numbers 
modulo 8191 repeat themselves. 

Modular arithmetic is also convenient in another way. This is that one can take 
powers of numbers with relative ease. In other words, given that a =b (mod 8191 ), 
one has az=bz (mod 8191). Hence given that 16381 =8190 (mod 8191), we get 
163812 :: 81902 (mod 8191). Now 8190 = 2. 4095 = 2. 3. 1365 = 2. 32.455 = 2. 
32. 5. 91. By quick calculation, we have 22 =4 (mod 8191), (32)2= 81 (mod 
8191), 52~ 25 (mod 8191), 912; 90 (mod 8191). And so 81902 =4. 81. 25.90 
(mod 8191). The latter is in turn congruent to 1 modulo 8191 Hence 163812 = 
1 (mod 8191 ). The fairly large number 163812 is now simply equal to 1 in 
arithmetic modulo 8191. 

Perhaps the most important elementary fact from the point of view of primality 
testing is Fermat's Little Theorem This theorem states that for all prime numbers n, 
an-1 = 1 (mod n). Thus for n = 8191 which is a prime number, we have 28190 = 1 
(mod 8191 ). Also, once 244497 -1 is known to be a prime, one may theoretically 
speaking calculate 71n-1, where n = 244497 -1, and find its value modulo n. By 
Fermat's Little Theorem, we know that this number is always congruent to 1 
modulo n. 

Thus a way to test primality would be the following: A number n is a composite 
if it is found, for example, that 2n-1 is not congruent to 1 modulo n. But is this a 
good test? If 2n-1 ; 1 (mod n), does it make n a prime? This is important for 
ensuring that what is thought to be a prime is indeed a prime. If v.e set n = 341 
(equal to 11. 31) then we see that 2340 ~ 1 (mod 341 ) , even though 341 is not a 
prime. Thus Fermat's Little Theorem does not provide a good recipe for primality 
testing. Despite this, it is known that there are very few composite numbers n which 
satisfy 2n-1 = 1 (mod n). Up to 20,000,000,000 it is known that there are only 
19,865 such composite numbers. If we vary the base number from 2 to 3, or to 
some other number, composite numbers n that satisfy an-1 = 1 (mod n) for a = 2 
may not do so for a = 3, or 4. There do exist composites n that satisfy an-1 = 1 
(mod n) for all numbers a. These numbers (call Carmichael primes)bear an even 
stronger resemblance to primes. They are very much rarer than those mentioned 
above. 
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In 1977, R. Solovay and V. Strassen introduced a 'Monte Carlo' algorithm for 
primality testing. The algorithm is inspired by the fact that composite numbers n 
that satisfy an-1 s 1 (mod n) are rare. It has the feature that if the input n is prime, 
then it will output 'possibly prime'. If the number n is composite, then at least half 
of the set of numbers a in ( 1: . . . . . . , n) will show that an-1 is not congruent to 1 
modulo n, thus testifying that n is not a prime. In other words, the probability is at 
least 1/2 that the algorithm will output 'n is a composite'. Thus if n is composite 
and k successive runs are conducted using the algorithm, with k randomly chosen 
a's between 1 and n, then the probability that n will pass off as 'possibly prime' in 
the output is less than ( 1 /2)k. This is an important result because for practical 
purposes, it may be worthwhile to accept a very small error factor if a considerable 
saving in computer time is achieved. For example, if 200 trials are conducted on a 
large composite number n (much larger than 200), then the probability that n is 
thought to be prime after these trials is less than ( 1 /2)200 , an extremely small 
number. Thus it takes very few steps to ensure that the number n chosen is 
99.99999999999999 % composite, while it may be an impossible task to proof that 
n is 1 00 % composite. 

In 1983 Ad Ieman, Rumely and Pomerance introduced an extremely efficient 
algorithm that removed the randomness in the Solovay-Strassen method. In this 
method one again begins by subjecting the given number n through tests similar to 
the test of whetheran- 1 = 1 (mod n) . If n does not pass all of these tests, it is a 
composite. Otherwise there is a small set of numbers containing all divisors of n less 
than or equal to [ii . Checking these individually one can decide whether or not n is 
a prime. Using their method as improved by others, it is possible to use a supercom­
puter to test the primality of a 1000 digit number in seven days, whereas previously 
it would take about 1044 years using other algorithms. About 10486 years would 
be required if one were to use ordinary division as the method of test, using a 
computer that does a million divisions per second. This shovvs the enormous 
progress made on primality testing in recent years. A very interesting feature of the 
Adleman, Rumely and Pomerance algorithm is that its verification uses the deep 
mathematical theory of algebraic numbers. This theory was originally developed by 
Kummer (1810- 1893) in his attempt to solve Fermat's conjecture. Over the years 
it has evolved into one of the most important areas in pure mathematics, pursued 
by many of the most talented minds. The fact that such a pure area of mathematics 
is applicable in a very practical situation is one of the most surprising elements of 
this work. 

An algorithm is 'fast' if its running time is polynomially bounded. This 
means that there is a fixed number k such that for each n it takes less 
than mk steps to test whether n is a prime, where m is the number of 
digits in n. From this point of view, the Solovay-Strassen method is 'fast' 
although it is not determinate. It is known that the Adleman-Rumely-Pomerance 
method is not 'fast'. This is however a somewhat misleading statement. For a care­
ful analysis shows that for all n less than 10b, where b = 999,999,999, it takes less 
than the number of digits in n raised to a fixed power k to test the primality of n. 
Hence although this method is not 'fast' in the strict sense, it is fast for most 
practical purposes. G. Miller has introduced a 'fast' algorit~m for primal!tv t~stin.g 
under the assumption of the Generalized Riemann hypothesis, a hypothesis wh1ch IS 
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as yet approved. Thus again deep concepts in the theory of numbers enter into 
the design of fast computer algorithms. 

All of the examples discussed above were discovered only within the last ten years. 
Fifteen years ago it would have been impossible to envisage such a thing happening: 
purest of pure mathematics applied to very practical problems. The age-old saying 
that fundamental research is very relevant because one day it could be useful has 
justification after all. What is in store for the future is very hard to tell. One can in 
any case be sure that some very pure mathematics will be instrumental in the 
solutions of some very down-to-earth problems. 
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