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s 0 Introduction 

Let A be a commutative Ring, and let f(x) = ( f1 , ... , f,) be a vector of polyno­
mials in X 1 , ••• , Xn with coefficients in A: f; (x) E A[x 1 , ••• , xn] (1 <. i <. r). The 
problem is to find solutions of f(x) = 0 in A, i.e. to find a,,. . .. an E A such that 
f 1 (a) = ... = fr(a) = 0. When A is an algebraically closed field this problem leads to 
Algebraic Geometry, while when A = Z this is the problem of Diophantine 
Equations. 

Let ..P : A-+ B be a homomorphism of commutative rings, and let tf(x) denote 
the polynomial obtained by applying cf> to the coefficients of n(x). Then f(x) = 0 
has a solution in A ~ t'(x) = 0 has a solution in B. This is trivial (but useful to prove 
the unsolvability of f(x) = 0 in A. For instance if A = Z and B == Z/(n) then the 
solvability of fP(x) = 0 in Z/(n) can be checked by a finite number pf trials, and if 
f 10(x). = o has no solution then f(x) = 0 has no solution.) The opposite implication is 
obviously false in general, but there are some important cases in which it is true. 
The main purpose of my talk is to explain this aspect of the problem in two cases. 
The first is the case of (simultaneous)linear equations, and the second is that of the 
Artin Approximation Theorems. Our discussion will show, hopefully, the im­
portance of the operations of Localization, Completion and Henselization. In the 
following all rings are assumed to be commutative, to have a unit element 1 and to 
be different from {OJ 

s 1. Linear Equations. 

Local Rings 

A ring A which has only one maximal ideal m is called a local ring; we say that 
(A, m) is a local ring, meaning that A is a local ring and m is its maximal ideal. As 
an example, lf?t 0 be the ring of holomorphic functions defined in neighbourhoods 
of the origin in Cfl, where the domain of definition may vary from function to 
function, and two functions which coincide in a neighbourhood of the origin are 
considered equal. Then the set m consisting of functions vanishing at the origin is 
the only maximal ideal of 0, because if f E 0, f Et: m then 1 /f E 9. Therefore 0 is a 
local ring. (This ring can be identified with the ring of convergent power series in 
n variables x 1 , ... , Xn with coefficients in C, and is denoted by C{ x 1 , ••• , x n} • ) 

We can construct many local rings from an arbitrary ring by the following 
method. 
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Localization Let A be a ring and P be a prime ideal (i.e. an ideal such that 
x, yEA- P implies xy $ P). Put 

A P = { : I . a E A; s E A - P } 

and if M is an A-module put 

Mp =i; / x EM, sEA- P}. 

a a' 
. Here, two fractions sands' are defined to be equal iff there is s" E A - P such that 

s"(s'a -sa') = 0; similarly in Mp. The AP is a ring (by the usual formulas of sum and 
product of fractions) and Mp is an AP - module. Moreover, AP is a local ring. In 

fact, m ={ : I a E P, s E A - P } is an ideal of AP and the elements of AP - m are 

units (i.e. have their inverses) in AP. Therefore m is the maximal ideal of AP. 

X 
There is a natural map M ~ Mp which sends x EM to1 E Mp. We will write 

X 
Xp forT. Then 

Xp = 0 ~ 3 SEA- P such that SX = 0 

~ P ~ann \X), where ann(x) = {a E A 1 ax = o}. We will use the follow­
ing two properties of localization: 
(I) Localization preserv·es exactness. Namely, if 

... ~L~M~N~ ... 

is an exact sequence of A-modules, then the corresponding sequence of AP -
modules . 

. . . ~ Lp ~ Mp ~ Np ~ ... 

is exact. 
(II) If x E M and if XP = 0 for all maximal ideals P then x = 0. 

Proof It x =I= 0 then ann(x) :I= A (because 1 x :j: 0), hence there exists a maximal 
ideal P containing ann(x). Then Xp =tO. 

THEOREM 1. If a system of linear equations 
n 

(*) .r. 8;- X.= b., i = 1, ... ; m (a;-, bi E A) 
1=1 I J l J 

has a solution in AP for every maximal ideal P of A, then it has a solution in A. 

PROOF. Let f : An ~ Am be the A-linear mapping given by f(x 1 , ••• , xn) 
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(~a1 .x. ~a ·2 x., .. . , ~a x.), and let {3 = (b 1 , ... , b ). Denote the cokernel off 
J I' I I m1 I m 

by N. Thus N = Am /f(Am ). Let~ be the image of {3 in N. Then (*) is solvable in A 
iff p = 0. (*) is solvable in Ap iff ~P = 0, because one can identify Np with the 
cokernel of fp : Apn -+ A; induced by f. Thus the theorem follows from the 
remarks (II) above. 

Determinantal Ideals Let M = (u .. ), u .. E A, be an r x s matrix. The rank of M is 
defined as usual, namely as the siz~ of l~rgest non-vanishing minors. 

Let t be an integer between 1 and Min (r, s). The ideal generated by the txt 
minors of M is denoted by lt(M) . Consider the system of linear equations (*) and 
put 

M = (aii), M' = (M, ~') 
~m 

m x n m x (n + 1) 

If (*) has a solution in A then the last column of M' is a linear combination of the 
columns of M. Hence: 

THEOREM 2. 

If(*) is solvable is A, then 

Remark: In general this condition is not sufficient. 

An integral domain A is called a Dedekind domain if (1) it is noetherian and (2) 
Ap is a discrete valuation ring for every non-zero prime ideal P. (A discrete valuation 
ring is a principal ideal domain which has a unique maximal ideal (11"), so that the 
non-zero ideals are (1f' ), n = 1, 2, .... ) The ring of algebraic integers in a number 
field (i.e. a finite extension field of Q) K is a typical example of a Dedekind domain. 

THEOREM 3 

If A is a Dedekind domain, then the system (*) of linear equations is solvable 
in A iff 

(1) rank M = rank M', and 

(2) I (M) = I (M') where r =rank M. r r 
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Example 

{ 
3x + 4y + 5z = 2 

x- 2y +z = 2 
Therefore it is solvable in Z. 

A=Z r=2 

I (M) = I (M') = 22. 
r r 

Proof of Th. 3. By localization we may assume that A is a discrete valuation ring. 
Then by elementary transformations on the variables and on the equations we can 
bring (*) to the following form: 

e. 
7r 1 Xi=b/, i=1, ... ,r; 

where 1r is a prime element of A. (This is the so-called elementary divisor theorem.) 
e 1 + +e e. 

Then I (M) = 1r r A, and I (M) =I (M') implies b .' E 1r 1 A as one can im-r r r 1 

mediately check. 

When A = Z this theorem was found in 1856. Since the elementary divisor 
theorem is valid only in principal ideal domains, localization (i.e. Th. 1) is essential 
in the generalization to Dedekind domains. We also like to point out that if there is 
only one equation then Th. 3 is just a tautology. The value of Th. 3 is to reduce the 
solvability of a system to that of a single equation. 

The Dedekind domains are, ring-theoretically, characterized as the one-di­
mensional, integrally closed noetherian domains. For more general rings (e.g. for a 
polynomial ring k [x, y] over a field k, which is a two-dimensional integrally closed 
noetherian domain) no useful necessary and sufficient conditions seem to be known. 

i 2. Artin Approximation Theorems. 

From now on, we will mean by a local ring a noetherian local ring. A local 
ring (A, m) has the m-adic topology, in which a fundamental system of neigh­
bourhood of an element x of A is given by { x + mv lv = 1, 2, ... } . A complete 
local ring is a local ring in which every Cauchy sequence (in11radic topology) converges. 
Every local ring has its completion. The ring of p-adic integers (invented by HenseJ 
in the 19th century) is the completion of Zpz . The completion of the convergent 
power series ringC/x 1, ••• , xn} is th~ formal power series ring C[x 1 , ••• , xn ]. 

The classical lemma of Hensel is stated as follows: 

Hensel's Lemma. 

Let A be a complete local ring and let k = Aim be its residue field. Let f(x) = 

xn +a 1xn -t + .. +a EA[x] and letf(x) =xn +81 xn- 1 + ... +a Ek[x] 
n n 

be its image in k [x]. If f(x) has a simple root c ink, then f(x) has a root a E A such 
that Zi =C . 
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This is an algebraic analogy of the implicit function theorem in analysis [if 
f(x, y) is coo in a neighbourhood of (o, c) and f(o, c) = 0, a f (o,c) =1= 0, then there 

ay 
exists a C00 function y = y(x) such that f(x, y(x)) = 0 and y(O) = c] and is easily 
proved by successive approximation. 

A local ring for which the conclusion of Hensel's Lemma holds is called a 
Henselian local ring. G. Azumaya and M. Nagata studied the properties of Henselian 
local rings. In particular, Nagata proved the existence of Henselization for every 
local ring. If A is the local ring of a polynomial ring k [x 1 , ••. , x ] (k = a field) 

n 

at the maximal ideal (x 1 , ••• , x ) , then its Hensel ization is the ring of algebraic 
power series, i.e. the set of th~se elements of the completion 1.\ = k[x 1 , •• • ,x ] 

n 
which are algebraic over A. 

M. Artin and some other algebraists (mainly in eastern Europe) have shown 
that Henselian rings have very good properties. The convergent power series ring 
k{!} = k{x 1 , •• • , xn} (k =Cor R, say) is a Henselian local ring. M. Artin first 
published the following analytic theorem: 

Theorem (inventiones Math. 5, 1968) 

Letf.(x,y)Ek{x1 , •• • ,x ;y
1 

••• ,y <,1~i~r. 
1 n , m 1 

LetY'{x) = ~ (x), .. . ;Y m (x) ), yi E k [~] 'Yi(O) = 0, be a solution of f(x, y) = 0, 

and let c > 0 be an integer. 
Then there exist }'(x) = (y1 (x), ... , y (x)), y.(x) E k{x}, such that 

m 1 -

/'. 
where m = l:: x. k [ x ] 

I -

According to this theorem, to solve the system of analytic equations one has 
only to find a formal solution. Convergent solutions can be found without any 
additional effort. 

Remark: The condition lr/0) is superfluous if f;'s are polynomials. 

Application. Let A= k {x 1 , •• • ,xn} and 151. = k[x 1 , •• • ,x, ~ (k = R or C), and let 
fO (x)E m A. If so(x) is irreducible in A then it is irreducible in A· 

Proof. Consider the equation 

n n 
(l:: x; T;) (k x. U.) =fO(x). 
i'=1 ]=1 I I 
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This is a polynomial equation in T 1 , .•• , T , U 1 , •.• , U , with coefficients in A. 
If it has a solution in~ then it has a solution i':t A by Artinf's theorem. 

We now turn to the algebraic version of the theory. Let A be a local ring, 
m its maximal ideal and~ its completion.Consider the following prop.erti~s:_AWAP) 
Let f = (f1 , ... , f ), f. E A[Y] = A[Y 1 , •.. , YN] .iff= 0 has a solution m A, then 
it has a solution inm A. ' (AP) f being as before, if Y' = (?\ , ... , yN ) is a solution of 
f = 0 in~ and if P E N is given, then there exists a solution y = (y 1 , ... , y N) in A 
such that y. =P:. mod. fTic, where 111 is the maximal ideal of~. 

1 1 

(SAP) For a given f as before, there exists a function v : N -7 N with the following 
property: 

if y = (y1 , ••• ,.VN) E AN satisfies f(ji) = 0 mod mvfcJ, then there is yEAN such that 

f(y) = 0 and y = y mod me. 

It is easy to see that (SAP)~ (AP) ¢> (WAP). actually all three properties are equival­
ent. 
Greenberg (1967) proved that excellent Henselian discrete valuation rings 
have (SAP). 
Artin (1969) proved that algebraic power series rings over a field have (SAP). 

Pfister-Popescu ( 1975) proved that all complete local rings have (SAP). It follows 
from this that (SAP) and (AP) are equivalent. Later an entirely new proof was given 
to their theorem; the new proof is based on ultraproduct construction, a favorite 
tool of logicians. 

Popescu (to appear) proved that excellent henselian local rings have (AP). 

It is easy to see that a local ring with (AP) must be hensel ian. It has been conjectured 
that such a ring must also be excellent. In this direction, Rotthaus proved that if 
A and A[x] have (AP) then A must be excellent. 

Application 1. 

Let A= k[x 1 , ••• , xn] be a formal power series ring over a field k, and let 

..P (x) Em A be irreducible. Consider the equation 

n n 
(*) (~Xi Ti) (~Xi U.) = ..P (x). 

i:::-1 j=7 I 

Since A has (SAP) by Pfister-Popescu, there is a function u: IN -7IN as in (SAP), for this 
equation. Put r =·v (1 ). Then (*)has no solution in A/mr (otherwise (*)would have 
a solution in A, making ..P (x) reducible). But the image of ( *) in (A/mr) [T, U] 
is the same if we replace ..P (x) by 'It (x) such that 'It =..P mod mr. Therefore, all such 

'It (x) E A are irreducible. In short, all formal power series sufficiently close to ..Pare 
irreducible. 
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Application 2 M. Hochster used Artin's result to prove the existence of so-called 
'big Cohen-Macaulay modules" for local rings which contain fields. We cannot 
explain the meaning of Hochster's result here, but it is considered as one of the most 
important achievements in Commutative Algebra in recent years. He gives a standard 
way of constructing of an infinitely generated module, and shows that the module 
thus constructed satisfies the requirement if certain systems of algebraic equations 
have no solution in A. Then he proves the unsolvability directly in the case of 
characteristic p. Then he reduces the case of characteristic zero to the case of 
characteristic p by means of Artin approximation theorem. 
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