
WHAT IS GROUP THEORY AND WHAT DO GROUP THEORISTS DO?* 
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First of all I would like to express my pleasure at this opportunity of 
addressing the Singapore Mathematical Society. It is also very pleasing to see so 
many promising young mathematicians here today. Clearly I cannot hope in the 
time available to give you complete answers to the questions posed in the title, but 
I hope by means of illustration to convey some idea of what group theory is about 
and what kind of problems group theorists are concerned with. 

Most of the audience will, I suppose, know what a group is, but I shall not 
assume this. Following the principle that a few good examples are worth a thousand 
definitions, I shall review some familiar sources of groups and postpone the formal 
definition until later. 

(i) Consider a regular tetrahedron T with 4 vertices, 6 edges and 4 faces. There are 
certain rotations that can be applied to T and which will leave it occupying the 
same region of space. Such rotations must of course be about an axis of symmetry; 
the latter are easily found. The possible rotations are about a line joining a vertex 
to the centroid of the opposite face through angle 2rr/3 or 4rr/3, and about a line 
joining the midpoints of opposite edges through angle rr. This gives a total of 4 x 2 + 
3 x 1 = 11 . rotations. To this list must be added the identity rotation which leaves 
every point of T fixed. Thus there are in all 12 possible rotations of T. The set of 
rotations of T is closed in the sense that if one forms the product of two rotations 
by performing first one and then the other (in the prescribed order) the result is 
equivalent to a single rotation of T. In addition each rotation ofT has an inverse 
rotation; composition of a rotation with its inverse always produces the identity 
rotation. The set of 12 rotations of T is a group of order 12. 

(ii) As a second example consider the set Xn consisting of the first n positive 
integers. Let a : Xn -+ Xn be an invertible mapping. Thus a assigns to each i in 
Xn an integer a(i) in Xn, and a( 1 ), a(2), ... , a(n) is just a rearrangement of the 
natural order 1, 2, ... , n. In other words a is a permutation of Xn. The permutation 
fixing every element of Xn is the identity permutation. Now the product of two 
permutations is formed by applying them successively. Each permutation has a 
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natural inverse. Hence the set of all permutations of Xn is another closed 
system; this is the well-known symmetric group Sn of degree n. Its order is 
n! = n(n- 1)(n- 2) ... 2.1. 

At this point I should like to draw attention to a connection between examples 
(i) and (ii) which illustrates two fundamental concepts of group theory, subgroup 
and isomorphism. 

Let the vertices of the regular tetrahedron T be labelled by the integers 1, 2, 

3, 4. Then each of the 12 rotations of T may be represented by a permutation of 

the set { 1, 2, 3, 4 } . Now S4 has 4! = 24 elements, so not every permutation of the 

vertices arises from a rotation: some permutations would require a twisting of the 

figure. A simple check reveals that the permutations that arise from rotations of 

T are exactly the even permutations; i.e. those which involve an even number of 

inversions of the natural order 1, 2, 3, 4. In general for n > 1 the even permutations 

of Xn form a subset An of Sn with +(n!) elements; An is closed with respect to 

forming products and inverses of its members and contains the identity. Thus An is 

also a group, the well-known alternating group of degree n. 

One says that An is a subgroup of Sn. 

The above discussion shows that the rotations of the tetrahedron T are in 
one-one correspondence with the elements of A4 . Moreover a check reveals that 
products in the rotation group correspond to products in A 4 • From the group 
theoretical point of view these groups are identical; in technical language they are 
isomorphic. 

The two examples of groups already discussed are merely special cases of a 
general situation. 

(iii) Let /:> be a "structure" of some kind - here I am being deliberately vague. 
Let there be associated with }. certain natural invertible mappings a : J ~ J 
including the identity mapping. The set of such mappings is to be closed under 
composition and inversion. Then the set of all such mappings 

Gp (p) 

is a group. Here }> could be a geometrical figure, a physical object like a molecule, 
a set etc. The idea is that the more "symmetric" /:> is, the larger will the group 
Gp(p) be. 

Thus one arrives at the idea of a group as a measure of the symmetry of a 
structure. This underlies many of the applications of group theory in mathematics, 
physics and chemistry. 

There is no reason why the group Gp (p) needs to be finite. For example, let 
be the set of lattice points of the plane i.e. all points with integral coordinates, 
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and let Gp( $ ) be the set of all rotations, reflections and translations of ,!. ; then 
Gp(}>) is clearly an infinite group. 

Now I really ought to tell you what a group actually is. It is a non-empty 
set G with a law of composition, so that given x, y e G, there is a unique element 
xy e G. There is an identity element 1G in G with the property x 1G = x = 1G x for 
all x in G. Each x in G has an inverse x-t in G, and xx-1 = 1G = x-1 x. Finally the 
associative law must hold: (xy)z = x(yz). 

Let me now say something aoout what group theorists do. Ideally the group 
theorist would like to classify all groups or possibly all groups with some specific 
properties. A word about the force of the term "classifv". The object is to describe 
a group by associating with it a set of invariants which determine the group up 
to isomorphism These invariants can be objects of any kind but obviously, if the 
classification is to be useful, they should be simpler objects than the original groups. 
It should be said that perfect schemes of classification of this type are quite rare 
in group theory; groups can be just too complicated. 

At this point I would like to draw your attention to a fundamental procedure 
in mathematics. If the objects under study are too complicated to understand, try 
to break them up into simpler objects and study these. A good illustration of this 
principle is provided by the reduction of finite groups to finite simple groups. 

To understand this it is necessary to recall some definitions. A subgroup H 
of a group G is said to be normal if g-1 hg e H whenever g e G and he H; for brevity 
one writes H <J G to denote the fact that H is a normal subgroup of G. If H <J G, 
it is possible to construct a new group, the quotient group G/H; its elements are the 
cosets xH = { xh I h e H } and its law of composition is the natural one (xH)(yH) = 
(xy)H. A group G is simple if 1G = ( { 1G })and G are the only normal subgroups of 
G and if IG I > 1. 

For a finite group G considerations of order reveal the existence of a series 

of subgroups 1G = G0 <J G1 <J ... <J Gn = G for which every factor G i+ 1 /Gi is 

simple; this is called a composition series of G. Thus a finite group is built up 

from finite simple groups by means of a composition series. To construct all finite 

groups it suffices to (i) classify all finite simple groups, and (ii) solve the extension 
problem, i.e. construct all groups G with prescribed normal subgroup N and 

quotient group Q = G/N. However this program is not easy to carry out. The classi­

fication of finite simple groups is an extremely hard problem; also, although in a 

formal sense the extension problem can be solved, the form of the solution tells one 

little about the structure of the constructed groups. In particular it is not easy to 

decide whether two of them are isomorphic. 

I should like to make some comments about the classification of finite simple 
groups; this has been the most famous or even notorious problem in group theory 
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in the last few years. The known finite simple groups fall into four classes: 

(a) the groups of prime order, 

(b) the alternating groups An, n ~ 5, 

(c) the groups of Lie type, 

(d) the 26 "sporadic" groups. 

There is little mystery about (a) since the groups of prime order are exactly the 
groups G with only two subgroups 1G and G; such groups are cyclic. The simplicity 
of An, n ;;;;:. 5, was known to Galois and underlies the impossibility of solving the 
general equation of degree n by radicals if n ~ 5. The groups of Lie type arise as 
groups of automorphisms of simple Lie algebras; they fall into severa1 infinite 
families, the best known being the projective special linear groups PSL(n, p). The 
sporadic groups are still a mystery and are apparently the result of number theoretic 
accidents; the smallest one has order 7,920 and was discovered by Mathieu over 
a century ago, while the existence of the largest (of order roughly 8 x 1053

) was only 
established within the last few years by R. L. Griess. 

It is now generally believed that the above is a complete list of the finite simple 
groups. However no complete proof of this has yet been published and it is 
estimated that if a proof were written down, it would occupy at least 5000 pages! 
This will give you some idea of the difficulty of the classification problem; without 
doubt its solution constitutes one of the major mathematical achievements of this 
century. 

Finally I would like to discuss another classification problem, one that has 
occupied my attention for several years. This is concerned with automorphism 
groups. If G is a group, recall that an automorphism of G is an invertible mapping 
a : G ~ G such that a(xy) = a(x)a(y) . The set of all automorphisms of G is a group, 
the automorphism group AutG, of G. (This can be thought of in the spirit of the 
example (iii), as the group Gp(G) of mappings of the "structure" G.) 

The question is, given a group G, does there exist a group X such that AutX 
is isomorphic with G, and if so, can one find all such X? If at least one X exists, 
the group G is said to be an automorphism group. The problem is: which groups 
are automorphism groups? 

In full generality this problem is too hard to handle. There are just too many 
examples of automorphism groups and it seems to be difficult to recognize them by 
any internal property. The only general fact known is that given a finite group G 
there are only finitely many finite groups X such that AutX is isomorphic with G 
(due to V.T. Nagrebeckii). · 

One natural source of automorphism groups is the class of complete groups; 
here a group G is called complete if every automorphism of G is inner, i.e. induced 
by conjugation by some element of G, and if the centre of G is 1G . Since AutG 
is isomorphic with G if G is complete, all complete groups are automorphism groups. 
Another fact worth mentioning is the result of J.T. Hallett and K.A. Hirsch that a 
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cyclic group of order n is an automorphism group if and only if n = f/>(pm) where 
q, is Euler's function and p is an odd prime. 

In conclusion I would like to discuss the position of finite simple groups vis-a­
vis automorphism groups. Here it has turned out to be possible to give a complete 
answer using the classification of finite simple groups. The finite simple groups 
which are automorphism groups are precisely the following: 

(a) groups of order 2, 

(b) GL(n, 2) where n > 2, 

(c) the finite simple groups which are complete, 

(d) the Suzuki group Sz(8) of order 29,120. 

A few comments on this list. There are no surprises in (a), (b), (c); obviously 
Aut( Z) has order 2 and if G is an elementary abelian 2-group of order 'Z, then AutG 
is well-known to be GL(n, 2) = PSL(n, 2) which is simple if n > 2. Also the finite 
simple groups which are complete are known. However the occurrence of the 
Suzuki group S = Sz(8) is quite unexpected. One could say that this is the only 
finite simple group which is an automorphism group in a non-natural way. 

For the expert I shall draw attention to the unique features of the group S 
which lead to its special behaviour. The Schur multiplicator M(S) is a Klein 4-group 
while the outer automorphism group OutS has order 3 and acts on M(S) by 
permuting the three elements of order 2. Thus if K is any subgroup of M(S) with 
order 2, then Nouts (K) = 1; this is the crucial property of S. In fact it turns out 
that S is the automorphism group of a proper covering group of order 58,240 
and of no other group. 
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