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The Gibbs phenomenon in Fourier analysis deals with the behavior of the 
partial sums of the Fourier series of certain functions near a point of discontinuity 
of these functions. In this paper we will explain this behavior and give some 
information about the history of the Gibbs phenomenon. 

1. Fourier series 

Throughout this paper we shall consider functions f defined on the real line 
that are periodic with period 271', i.e. f(x + 271') = f(x) for all x, and that are piece­
wise continuous. This last condition means that on each finite interval f is 
continuous except at at most finitely many points where we only require that the 
left-and right-sided limits of the function exist. 

In the theory of Fourier series we try to express such a 271'-periodic function 
as an infinite sum of the "basic" 271'-periodic functions sin nx, cos nx or einx. 
Disregarding, at least for the moment, questions of convergence, we can associate 
with a given function f two infinite series 

"v ao + 00 

( 1) f(x) ~ (akcos kx + bk sin kx), 
2 k = 1 

00 

f(k)eikx, (2) f(x) "v ~ 
k = - 00 

where 

(3) ak = _l_f" 
71' (') 

f(t)cos kt dt, 1 f" bk =- f(t)sin kt dt, 
71' 0 

(4) 1\ 1 J 2rr 'k f(k) = 
2

7r 
0 

f(t)e 1 tdt. 

The series defined in ( 1) and (2) are called the real or complex Fourier series 
" of f and the numbers ak, bk and f(k) defined in (3) and (4) are called the real and 

complex Fourier coefficients of f. Since for each integer k we have eikx =cos kx + 
1\ 

i sin kx, it is clear that the ak and bk can be expressed in terms of the f(k) and vice 
versa. To explain why the complex Fourier coefficients are defined as in (4) assume, 
for a moment, that f(x) can be expressed as the sum of an infinite series of the 
form 

00 

(5) f(x) ~ 
k = - 00 

*Text of an invited lecture delivered to the Society on 21 October 1982 at the National University of Singapore. 
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If, moreover, f is so smooth that the series converges uniformly to f(x) then we 
have for an arbitrary integer k0 

00 

L 
k = - 00 

Integrating both sides from 0 to 2rr and interchanging summation and integration, 
we see that 

because 

_1 J2rr f(x)e -ikox dx 
2rr o 

- e dx = 
l J2rr i(k - k0 )x 

2rr 0 

00 

L 
k = - 00 

{
0
1 

if k =f. k0 , 

if k = k 0 • 

i(k- k0 )x d e x 

Thus, for sufficiently smooth functions, the only way to express f as an infinite 
" series like in (5) is to choose ck = f(k) as defined in (4). 

In our first theorem we shall give a sufficient condition that implies that the 
complex Fourier series of a given function converges to the function at some point. 
However, we first prove a simple lemma for complex Fourier coefficients. 

" 1 J 2
7T f( ) Lemma 1. (a) For each integer k we have I f(k) I ..:;;; -

2 
I x I dx. 

" " rro (b) lim f(k) = lim f(k) = 0. 
k--+ -00 k ->oo 

Proof. Part (a) is trivial. To prove (b), first assume that f is continuous. For each 
k we have 

i.e., 

f(k) = - 1- J2rr f(t)e-iktdt 
2rr 0 

27T + 2!.. . 7T 
1 J k 1r - lk(t- -) 

= 2rr f(t -k) e k dt. 
7T 

k 

" 1 J2rr rr -ikt f(k) = -- f(t --k)e dt. 
2rr 0 

Therefore, 

..:;;; 2~ J:" I f(t) - f(t- ~) I dt 

..:;;; max {I f(t) - f(t- ~)I t e [0, 2rrl}. 
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Thus 1 f(k) 1 ~ 0 ask~± oo, because, actually, f is uniformly continuous on [0, 27T]. 
If f is only piecewise continuous, choose, for given e > 0, a continuous 21r-periodic 
function g such that 

-1 J2
7T I f(tl 

21T 0 
g(t) I dt < e. 

" " Then l f(k) I < I f(k) g(k) I + I g (k) I , which, combined with part (a), im-
mediately implies (b). 

Theorem 1. If f'(x) exists in a neighborhood of a point x0 , then the complex 
Fourier series off converges at X0 to f(x0 ). 

Proof. Replacing, if necessary, f(x) by f(x + x 0 ) - f(x0 ), we may assume, without 
loss of generality, that x 0 = 0 and f(x0 ) = 0. Define the function g by 

_ [(eix - 1 )- 1 f(x) 
g(x) - -i f'(O) 

if x f. n·21T, 
if x = n·21T. 

Then g is continuous at x = 0 (Q 'Hopital's Rule) and, consequently, g is piecewise 
continuous and 21T-periodic. Since f(x) = (eix -1 )g(x) for x f. n·21T, we see that 
f(k) = g(k- 1) - g(k) for each integer k. Therefore, 

n 
~ 

n 
~ (g(k- 1) - g(k)) 

k =- n k = -n 

A 1\ 
g(-n -1) - g(n) ~ 0 = f(O) 

as n ~ oo, according to Lemma 1 (b). This completes the proof of the theorem. 

Remark. (i) Lemma 1 (b) is known as the Riemann-Lebesgue Lemma. 

(ii) The proof of Theorem 1 as given here is due to P. Chernoff, see 
[ 1] for additional details. 

(iii) Lemma 1 and Theorem 1 also hold for real Fourier coefficients and 
Fourier series. 

2. The Gibbs phenomenon 

We begin this section by giving some examples of piecewise continuous, 21T­
periodic functions and their real Fourier series. It may help the reader to sketch 
the graph of each of these functions and to compute at least some of the Fourier 
coefficients directly from the definition given in (3). As we shall see in Section 3, 
the first three examples all played a role in the history of the Gibbs phenomenon. 

(6) If f(x) = ~(7T- x) for 0 < x < 21T and f(O) = 0, then f(x) = k ~ 
1 

~sin kx. 
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1 00 (-1)k+1 
(7) If g(x) = -

2 
x for -rr < x < rr and g(rr) = O, ,then g(x) = L .....:.._....:....:....,k--sin kx. 

k = 1 

(8) If h(x) = ~for I x I< ;. h(x) =- -~, ~<I x I< rr, h (± ;) = 0, then 

00 

h(x) = L 
k = 1 

(-1)k-1 

2k - 1 
cos(2k - 1 )x. 

(9) If ¢(x) = - ; for -rr < x < 0, ¢(x) = ; , 0 < x < rr, ¢(0~ = ¢(rr) = 0, then 

00 1 . 
¢(x) = 2 k ~ 

1 2k _ 1 s1n (2k- 1 )x. 

Note that, according to the Theorem 1, the Fourier series of each of these 
functions converges to the function at the points of continuity and, clearly, the 
same is true at the points of discontinuity. As we shall see, the partial sums of the 
Fourier series show the same kind of peculiar behavior near the points of dis­
continuity of the corresponding limit functions. We shall first consider this behavior 
for the function ¢(x) of example (9). Define ¢n by 

n 1 . 
1/>n (x) = 2 k ~ 

1 2k _ 1 Sin (2k - 1 )x. 

Then ¢n is 2rr-periodic, ¢n (-x) = -1/>n (x) and ¢n(O) = ¢n (rr) = 0. So, we only need to 
study ¢n for x € (0, rr). To find the local maxima and minima of ¢n we consider 

n 
¢~(x) = 2 ~ cos(2k- 1 )x 

k = 1 

n 
2(sinx)- 1 L cos(2k - 1 )x sin x 

k = 1 

n t (sin 2kx - jn(2k - 2)x) = 2(sinx)- 1 L 
k = 1 

(sin x)- 1 sin2nx. 

Thus, 

(10) ¢ (x) = Jx sin. 2nt dt 
n 0 Sin t 

1r 
0 on (o, rr) <* x = m 

2
n , 1 ~ m < 2n. and¢' (x) 

n 

The following results are of interest to us. 

Theorem 2. (a) ¢n (x) has its relative maxima on (0, rr) at x = (2Q - 1) ;n ( 1 ~ Q 

~ n) and ¢n (x) has its relative minima on (0, rr) at x = 2Q ;n ( 1 ~ Q < n). 
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(b) <f>n((2Q-1) 2~) > </>n((2Q+ 1) 
2
7rn) (1.,;;Q<~). 

(c) max{<f>n(x); xe(O,rr)} = <Pn!
2
rrn). 

7r 7r 
(d) <l>n + 1 ( 2(n + 1)) > <f>n("'2rl). 

(e) lim <f>n(
2
rr) = J11 

sint dt S. 
n-...oo n 0 t 

Proof. (a) follows immediately from a computation of </>~' (x) at x = m 
2
rrn . (b) 

follows easily from the representation of <Pn (x) as given in ( 1 0) and (c) is a direct 
consequence of (b). To prove (d), notice that (c) implies 

7r 7r 
<l>n + 1 ( 2(n + 1 )) ;;;;. <l>n + 1 ( 2r1) 

-A.(.....!._)+ 
2 

sin(2n+1) 
2
rrn > A..n(

2
rrn). - 'f'n 2n 2n + 1 'f' 

Finally, to prove (e) we observe that 

<l>n ( 2rrn ) = 2 k ~ 1 2k ~ 1 sin (2k - 1) 2rrn 

n sin(2k- 1) 2rrn 
L 

k = 1 (2k- 1) {n 
7r 
n' 

which is a Riemann sum for the integral in (e) corresponding to the partition of 
(0, rr) into n equal intervals and taking the value of the integrand c 1 sin t at the 
midpoint of each of these intervals. This completes the proof of (e). 

-1( 

; + .895.11 
1( . 

2 H--+--f--\--f--\--:>L-'r-f-----\:-+-+- <I> ( x) 

.!!... 
12 

1T 

---+-+-+~~~-\-T-~~~H-2 
1T -2 - 0.895.71 
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In view of Theorem 2(e) it becomes important to find the value of S. Accord­
ing to [2] we have 

lim ¢n(
2
7r) 

n-+-oo n 
s = 1.8519370 ... 

.5895 ..... 7r 

.5895 ..... (¢(0 +) - cp(O-)) 

; + .0859 ..... (¢(0+) - ¢(0-) ). 

Thus the functions ¢n (x), which are partial sums of the Fourier series of¢, exceed 
or overshoot the function ¢ near its point of discontinuity x = 0 by approximately 
9% of the jump in ¢-values at x = 0. More formally, we have 

lim max ¢n (x)) -1- max 
n-+ oo X € (0, 7T) X € (0, 1T) 

(lim cl>n (x)). 
n-->oo 

This overshoot is an example of the so-called Gibbs phenomenon for Fourier 
series. As will be shown in the next theorem, a similar overshoot is exhibited by 
many functions. To simplify our notation, let Sn (f ; x) denote the n-th partial 

a 
sum of the Fourier series of a function f, i.e., Sn (f; x) = T + 

bk sin kx). Note that with this notation, ¢n (x) = S2n _ 1 (Q>; x). 

n 

~ 
k = 1 

(ak cos kx + 

Theorem 3. Let g be a real-valued 21r-periodic function so that g and g' are both 
piecewise continuous. Assume that g has a discontinuity at x = a and that g(a+) -
g(a-) = a. Then the partial sums of the Fourier series of g overshoot the function 
g in a neighborhood of x = a by approximately 9% of the size of the jump a. 

Proof. (OUTLINE). First define g by 

'V 1 
g (x) = g(x+a)- 2(g(a+) + g(a-)). 

Then g has a discontinuity at x = 0 and g(O-) = -g(O+ ). Next define the function 
h by 

f og(x) - ~ cp(x) 
h(x) = l 

if X "f. 0, 

if X = 0. 

Then h is continuous at x = 0 and both h and h' are piecewise continuous. Accord­
ing to a theorem due to Jordan, the Fourier series of h converges uniformly to h(x) 
in a neighborhood of x = 0. Therefore, 

lim 
7r 

S2n- 1 (h; 2n) = h(O) = 0. 
n -+ oo 
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Consequently, 

lim 
n -+ oo 

'V 1r 
S2n - 1 (g ; 2n l 

= 

£!:.. lim S2n - 1 (¢ ; 27rn ) 
1r n-+oo 

~lim ¢n (...!!:...) 
1r n ___. oo 2n 

a . s s 
= -a = .5895 ... a. 

1r 

1r 'V7r 1 
Since S2n _ 1 (g; a + 211) = S2n _ 1 ( g; 

2
n) + 2'<g(a+) + g(a- )), we see that 

1r 1 
S2n _ dg; a + 

2
n) = 2(g(a+) + g(a- )) + .5895 .... a. lim 

n -+ oo 

Comparing this formula with formula ( 11) we see that the partial sums of the 
Fourier series of g near x = a display the same behavior as the partial sums of the 
Fourier series of ¢ near x = 0. This peculiar behavior is called the Gibbs pheno­
menon. 

3. Historical remarks 

The following remarks are extracted from the fascinating article by E. Hewitt 
and R. E. Hewitt [2]. Their paper contains a wealth of information on the history 
of the Gibbs phenomenon. It also contains a much more detailed analysis of this 
phenomenon than is given here. Their article is highly recommended and is a 
pleasure to read. 

In October 1898 the physicist A. A. Michelson wrote a letter to Nature, in 
which he criticized "the idea that a real discontinuity can replace a sum of 
continuous curves", that is to say, the idea that a series of continuous functions 
could converge to a discontinuous function. Michelson used the series given in (7) 
to "explain" his contention but he was clearly confused about the difference 
between the sum of an infinite series and the (large) partial sums of such a series. 
In the next issue of Nature the mathematician A. E. H. Love gave a rather sarcastic 
response to Michelson's letter, in which he pointed out Michelson's confusion and 
lack of understanding. One month later, J. W. Gibbs joined the discussion in Nature. 
In his first letter he tried to clarify Love's explanation, stating that the limit of the 
graphs (of the partial sums of a Fourier series) is not necessarily the same as the 
graph of the limit. In a second letter published in Nature in April 1899, Gibbs 

mentioned the quantity S = J" t- 1 sin t dt, which determines the amount of 
0 

overshoot as explained in § 2 of this paper. It is of some interest to mention here 
that Gibbs gave no hint of a proof for any of his assertions. 

In 1906 M. Becher published a long paper in which he gave a detailed analysis 
of the behavior of the Fourier series of the function given in (6). He also proved, 
essentially, our Theorem 3 and he introduced the terminology "Gibbs phenomenon". 
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In 1912 T. H. Gronwall published a much more detailed analysis of the Fourier 
series (6). He gave a wealth of new results, in particular, he proved several interesting 
properties for the other relative maxima and minima of the partial sums Sn (g ; x). 
Although Gronwall, in passing, mentions Becher's paper, the latter in a 1914 paper 
severely criticized Gronwall for not giving him enough credit for his work of 1906. 
In a reaction to Becher's paper, L. Fejer noted that Bocher's claims to priority 
were by and large unjustified and that only "after the publication of Herr T. H. 
Gronwall ( 1912) certain questions can in fact today be handled with the greatest 
ease, for which, however, in the year 1906 every trace of a hint was lacking". 

Then towards the end of 1914 H. Burkhardt described some long-forgotten 
work by the British mathematician H. Wilbraham, who already in 1848 had 
discovered Gibbs's phenomenon when he studied the Fourier series of the function 
h of example (8). Thus it would seem to be more appropriate to call the 
phenomenon discussed here the Wilbraham-Gibbs phenomenon. 

In short, even a cursory look at the history of the Wilbrahm-Gibbs pheno­
menon showed us some of the human side of the mathematical activity: we meet 
a forgotten pioneer in the person of Wilbraham, we saw some of the confusion 
about the meaning of convergence for infinite series that still existed around the 
turn of the century and we encountered a rather bitter dispute between Becher and 
Fejer about priorities of mathematical results. To conclude with a quote from (2]: 
"Gibbs's phenomenon and its history offer ample evidence that mathematics, for 
all its majesty and austere exactitude, is carried on by humans." 
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