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Any keen mathematics student will tell you that complex numbers come in 
when you want to solve a quadratic equation ax 2 + bx + c = 0 when b2 < 4ac. How­
ever, if one tries to find out how they first came into mathematics then the sur­
prising answer is that they were first introduced in the process of solving not qua­
dratic but cubic equations. When Bombelli ( 1526-1572) first discovered what we 
call complex numbers he wrote (in translation): 

"I have found a new kind of tied cube root very different from the others." 

By a "tied cube root" he means a cube root expression like ..J'(2 + y=T2l) where 
there is a square root under a cube root. 

How did he come to consider such monstrous expressions? And why weren't 
complex numbers introduced in the context of solving quadratic equations as they 
are today? It is the purpose of this paper to try to answer these questions. 

2. The Greeks 

It is often said that the Babylonians (in the second millennium B.C.) and the 
Greeks (no later than about 300 B.C.) knew how to solve quadratic equations. In 
fact, if you look at what they wrote then there are no traces of x's, no ideas of 
polynomial equations of degree 2, 3, etc. What we do find are problems of the 
form: A rectangle has two adjacent sides whose total length is 10 and its area is 24. 
What are the lengths of the sides? 

We think of this as a + b = 10, ab = 24 and then move to the equation 
x 2 -1 Ox + 24 = 0, regarding a, b as the roots and using the fact that the sum of the 
roots is 10 and the product 24. But this was not the Babylonian or Greek way. The 
Babylonians gave a recipe (formula is not quite the right word in its modern sense), 
the Greeks a geometrical construction, to give the answers. The Babylonians never 
considered (so far as we knew) cases where problems had complex solutions. The 
Greeks could never have produced a complex solution because their constructions 
produced actual lines and you cannot draw a line of complex length (even though 
we do now use Argand diagrams for representing complex numbers). 

3. al- Khwarizmi 

From at least the seventh century A.D. Hindu mathematicians treated (the 
equivalent of) quadratic equations and they explicitly said that negative quantities 
do not have square roots. Much of their mathematics was transmitted to the Arabs 
but, curiously, the Arabs did not, so far as we know, use negative quantities. 

*A version of a talk given to the Singapore Mathematical Society, 23 March 1979. 
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ai-Khwarizmi (9th century A.D.), from whose name we get the word "algorism" 
or "algorithm", wrote the first book on algebra- indeed he called his book Hisab al­
jabr w'almuqabala (830 A.D.) and that is why we use the Anglicized form of al-jabr 
even today. 

This book classifies equations and shows how to solve them. Since ai-Khwarizmi 
did not use negative numbers he classified quadratic equations in the following sorts 
of way: 

Square equal to numbers, 
Square plus roots equal to numbers, 
Squares equal to numbers plus roots, etc. 

In our notation (with b, c positive): 

x2 = c, 
x2 + bx = c, 
x 2 = c + bx. 

He gave two kinds of solution. I shall call these geometrical and radical. Consider 
the equation 

x2 + 10x = 39 

and consider the diagram 

where the central square has side x and each oblong adjoining it has its other side 
2%. Then the figure without the corner squares has area x 2 + 4(2%x) = x 2 + 10x. If 
we add the corners, each of area (2%) 2 , we get the whole area to be 

x2 + 10x + 4(2%) 2 = x2 + 10x + 25. 

But x 2 + 10x = 39 so x 2 + 10x + 25 = 39 + 25 = 64. Thus the area of the whole 
figure is 64 and, since it is a square, its side is 8. Hence x = 8- (2% + 2%) = 3. This 
is the geometrical solution. 

The radical solution is that given by (essentially) the well-known formula for 
solving a quadratic. Paraphrasing ai-Khwarizmi we have "square half the coefficient 
of x [(10/2) 2 ] and add the numbers [+39]. Total 64. Take its root, 8. Subtract half 
the coefficient of x [ 10/2]. Answer 3." 

He neglected the other (in this case negative) root. 
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4. Omar Khayyam 

Three hundred years later algebra had advanced considerably and cubics were 
being treated. It would appear that the work of Diophantos (who probably lived 
some time between 150 and 350 A.D.) had been rediscovered. Diophantos was 
sophisticated enough to consider not only cubes but also fourth, fifth, sixth powers. 
Just how much Diophantos influenced the Arabs we do not know, but Omar Khay­
yam (more famous for his Rubaiyat) wrote a book in which he gave a fine treatment 
of cubics. 

The major breakthrough came from a theorem of Archimedes (The Sphere and 
the Cylinder proposition 11.5). This gave a geometric method for solving a cubic 
equation. Omar Khayyam used this technique and said that if one wanted to solve a 
cubic equation then conics must come in (and not just ruler and compass). He did 
not justify this remark except practically. He solved cubics using properties of 
conics. What this amounts to is producing lines which solve cubic equations. Then, 
of course, if a numerical answer is required, the line must be measured. 

Omar Khayyam's (not completely fulfilled) aim was: a) to classify cubics and 
b) to solve them all. He classified them in the same way as ai-Khwarizmi, considering 
the various types such as 

cubes equal to squares, roots and numbers, (x3 = ax2 + bx + c with a, b, 
c all positive.) 

He wished to give three types of solution: i) geometrical solutions, ii) radical 
solutions and iii) integer solutions. He was successful in the first endeavour, for the 
geometric constructions he gave worked for all cubics (with real coefficients). He 
was not succcessful in the second, nor in the third. In the latter case he wished to 
find conditions on the coefficients which would ensure an integral solution. Dio­
phantos employed similar considerations in his treatment of equations. 

Not surprisingly, Omar Khayyam did not approach complex numbers for they 
had no place in the geometry. 

5. The Italians 

By about 1200 Arab culture was becoming better known in Europe. Fibonacci, 
otherwise known as Leonardo of Pisa, went across to North Africa where his father 
worked in the customs. There he learned of Hindu-Arabic numerals (0, 1, 2, ... , 9) 
and he is generally regarded as one of the first to introduce these into Europe. He 
travelled a lot and learned a great deal of mathematics from the Arabs and in one of 
his works he did solve a cubic equation. He even showed that his equation 1 Ox + 2x2 

+ x 3 = 20 did not have an integral nor a rational solution, and he worked out an 
approximate answer to a high degree of accuracy (1.368808). All this he did by 
Euclidean geometry, not using conics. Indeed, Omar Khayyam's work did not seem 
to have become known for a very long time. 

From Fibonacci onward there were a lot of Italians working on algebra, but it 
was not until the end of the fifteenth century that great strides were made. 
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Luca Pacioli wrote a book in 1494 - the first printed book on algebra as 
opposed to arithmetic and in this book he spent a lot of time doing manipulations 
with square roots and cube roots. However, Pacioli was of the opinion that one 
could not solve cubic equations by radicals. (In a sense he was right: one cannot 
solve all cubic equations using only real roots even if one restricts the coefficients 
to be real.) 

Shortly afterwards, probably around 1510 or slightly later, Scipio dal Ferro 
did solve cubics. Whether he knew how to solve all types is unclear. Basically his 
treatment was the modern one. After removing any x 2 term by an appropriate 
substitution (in x 3 + ax2 + bx + c = 0 put y = x + a/3) one is left with either x 3 = 
px + q or x 3 + px = q where p, q are both non-negative. Neglecting the easy case of 
p or q = 0, in essence, Scipio's treatment was to compare the equation with 
x3 = (u 3 + v3 ) + 3uvx which he obtained from (u + v) 3 = u3 + v3 + 3uv (u + v), 
where x = u + v. 

The problem then is to find numbers u, v such that u3 + v3 = q and 3uv = p. 
If we write a = u3 , b = v3 then the problem is to find numbers a, b such that a+ b = 
q and ab = p3 /27. But this problem is one whose solution was known to the Greeks, 
as we noted near the beginning of this paper. Having found a, b we have 

x = ~a+~b 

where a, b = +q/2 ±J((q/2)2 - p3 /27). And now we see where Bombelli's tied cube 
roots' come in. 

In fact Cardan published, in his Ars Magna of 1545, the solution of a quadratic 
equation with complex roots but Cardan regarded these as sophistic and useless. It 
appears from other writings that Cardan did not have any clear grasp of complex 
numbers and how they worked. It was left to Bombelli, who wrote his Algebra in 
the 1550's but did not publish it until 1572, the year of his death, to give a full, 
formal and clear treatment of these new numbers. 

Bombelli was adept at manipulating expressions involving radicals. Presumably 
he employed the same rules for his tied cube roots and also performed calculations 
such as in (in our notation) (2 + i) 4 J 2 + 11 i. In treating one cubic equation he 
came up with the expression~ (2 + 0-121) +~ (2 -y'0-121) from which he 
obtained (2 + .JO=il + (2 - y'O=T) which equalled 4. What he then did was to 
substitute this solution back into his cubic and it worked! 

Bombelli had also been suspicious of these new numbers but having employed 
them for a while, he came to accept them and overcame his misgivings. For him the 
proof of the pudding seems to be in the eating! 

Even though Bombelli gave rules such as (in modern, but not very different, 
notation) 

(+i).(+i) = -, 
(+i).(-i) = + 

it was still quite a long time before complex numbers were totally accepted. The 
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final justification of the formula for the solution of the cubic did not come until 
1686 when Leibniz showed by substituting the formal solution back in the cubic 
that the formula always gave a solution. By that time the use of letters for variables 
became common practice and this allowed a general treatment which was not 
possible a century or so before. 

6. Conclusion 

Thus we see that the geometric context of problems which we regard as poly­
nomial equations militated against the introduction of complex numbers for a very 
long time, and it was not until a more 'algebraic' approach was adopted and the 
solution of cubic equations was given a recipe or 'formula', that it transpired that 
numbers formally defined did lead to solutions - even when, in the intermediate 
stages, those numbers were imaginary. Even then it was a long time before these 
new numbers were formally justified - first by Leibniz in the sense that they did 
give proper solutions of the cubic and later, in the nineteenth century, by Hamilton 
when he reduced complex numbers to pairs of real numbers with specially defi!"led 
operations for addition and multiplication - but that is beyond the scope of our 
present essay. 
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