GROUP OBJECTS IN A CATEGORY WITH FINITE PRODUCTS*

S.K. Tan Nanyang University

A group is commonly defined as a system consisting of a set together with a binary operation satisfying certain axioms. This definition of a group can also be presented by means of diagrams and arrows in the category of sets. With this 'diagrammatic' presentation, the notion of 'group objects' in a category with finite products was generated. Furthermore, since no explicit mention of the group elements is made in the definition of a group object, it can be applied to other circumstances. Thus, a 'group object' can represent a group, a topological group, or a Lie group depending on whether the category concerned is a category of sets, of topological spaces, or of differentiable manifolds. The main purpose of this note is to introduce the definition of a group object and to give a concrete example of such an object with no group elements involved, namely, a group object in the category of matrices.

A category $\mathcal C$ is said to have finite products if for any finite number of objects c_1 , c_2,\ldots,c_n , the product diagram $c_1\times c_2\times\ldots\times c_n$ c_i , $i=1,2,\ldots,n$, exists in $\mathcal C$. In particular, if $\mathcal C$ has finite products, then $\mathcal C$ has a terminal object $\mathcal L$, i.e. the product of no objects in $\mathcal C$. If $\mathcal C$ is a category with finite products, then an object $\mathcal L$ in $\mathcal C$ is said to be a group object in $\mathcal C$ if $\mathcal C$ is equipped with the following arrows:

$$\mu : A \times A \longrightarrow A$$
,
 $\eta : \mathbb{1} \longrightarrow A$,
 $\psi : A \longrightarrow A$.

such that the following diagrams are commutative:

^{*}Abstract of paper presented on 2 September 1978 at the Seminar on Group Theory and Related Topics.

$$1 \times A \xrightarrow{\eta \times id_A} A \times A \xrightarrow{id_A \times \eta} A \times 1$$

$$\downarrow^{\mu}$$

1!
$$A \xrightarrow{\Delta} A \times A \xrightarrow{\text{id}_A \times \mu} A \times A \\ \downarrow \mu \\ \downarrow 1$$
(III a)

and

where α , λ and ρ are canonical isomorphisms in $\mathcal C$, id_A the identity arrow of A, Δ the diagonal arrow, and 1! denotes the unique arrow to the terminal object $\mathbb L$ from an object A in $\mathcal C$. To illustrate such a notion, we consider the category Matr_R of matrices over the field of real numbers R. The objects of Matr_R are non-negative integers [0], [1], [2], ... and for each pair of objects [n] and [m], the set of arrows $\operatorname{Hom}([m], [n])$ is the set of all n x m- matrices with entries from R. The composition of arrows is defined to be the usual multiplication of matrices. Here, we define the set $\operatorname{Hom}([0], [n])$ to be the set consisting of the unique n x 0-matrix $[\ \]_{0\times m}$. Multiplication of such matrices are defined as follows. The product of the n x 0 - matrix with the 0 x m - matrix is the n x m - matrix with only zero's as its entries, whereas the product of the 0 x n - matrix and an n x m -

matrix is the unique $0 \times m$ - matrix, and similarly, the product of an $n \times m$ - matrix and the $m \times 0$ - matrix is the unique $n \times 0$ - matrix. Then $Matr_R$ is a category with finite products and its terminal object is [0]. Indeed, the product-diagram of any two objects [n] and [m] in $Matr_R$ is given by

$$[n] \stackrel{p_1}{\longleftarrow} [n+m] \stackrel{p_2}{\longrightarrow} [m] :$$

where p_1 and p_2 are the respective n x(n+m) and m x (n+m) matrices defined as follows:

$$p_{1} = \begin{bmatrix} I_{nxn} & 0_{nxm} \end{bmatrix} = \begin{bmatrix} 1 & 0 \dots & 0 & 0 \dots & 0 \\ 0 & 1 \dots & 0 & 0 \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 \dots & 1 & 0 \dots & 0 \end{bmatrix}$$
n rows columns

and
$$p_2 = \begin{bmatrix} 0 \\ mxn \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$
 m rows columns

One can readily verify that for any object [m], $m \neq 0$, in Matr_R, the following arrows:

$$\eta = \begin{bmatrix} I_{\text{mxm}} & I_{\text{mxm}} \end{bmatrix} = \begin{bmatrix} 1 \dots 0 & 1 \dots 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 \dots 1 & 0 \dots 1 \end{bmatrix} : [m] \times [m] \rightarrow [m]$$

$$\eta = \begin{bmatrix} 1 & \dots & 0 & \dots & \dots & \dots \\ 0 & \dots & 1 & \dots & \dots & \dots \end{bmatrix} : [0] \rightarrow [m]$$

and

$$\nu = -\mathbf{I}_{\mathbf{m} \mathbf{x} \mathbf{m}} = \begin{bmatrix} -1 \dots 0 \\ \vdots \\ \vdots \\ 0 & -1 \end{bmatrix} : [\mathbf{m}] \longrightarrow [\mathbf{m}]$$

will make [m] into a group object in Matr_R.

REFERENCES

- 1. S. MacLane, Categories for the Working Mathematician, Springer-Verlag GTM 5, 1971.
- S.K. Tan, "Abelian Group Objects in a Category of Matrices", Research Report No. 52,
 Lee Kong Chian Institute of Mathematics and Computer Science, Nanyang University,
 October, 1977.