FINITE 2-GROUPS OF CLASS TWO WITH CYCLIC CENTRE*

Y.K. Leong University of Singapore

It was discovered by J.M. Brady (Bull. Austral. Math. Soc. 1 (1969), 403-416) that a finite q-group of nilpotency class two with cyclic centre is a central product either of two-generator subgroups with cyclic centre or of two-generator subgroups with cyclic centre and a cyclic subgroup, and that the finite q-groups of class two on two generators with cyclic centre comprise the following list:

$$2r \le n$$
: $Q(n,r) = \langle a,b : aq^n = bq^r = 1, aq^{n-r} = [a,b] \rangle$;
 $r \le n < 2r$: $Q(n,r) = \langle a,b : aq^n = bq^r = 1, aq^r = [a,b]q^{2r-n}$;
 $[[a,b],a] = [[a,b],b] = 1 \rangle$;

and if q = 2 we have as well

$$n \ge 1$$
: $R(n) = \langle a, b : a^{2n+1} = b^{2n+1} = 1, a^{2n} = [a, b]^{2n-1} = b^{2n},$

$$[[a, b], a] = [[a, b], b] = 1\rangle.$$

In conjunction with an earlier work (J. Austral. Math. Soc. 17 (1974), 142-153) which deals with the odd-order case, this paper completes the solution of the isomorphism problem for finite nilpotent groups of class two with cyclic centre by obtaining a canonical decomposition for 2-groups of such type and proving its uniqueness.

The main result is the following theorem.

^{*}Abstract of paper presented on 1 September 1978 at the Seminar on Group Theory and Related Topics.

SOME RESULTS ON METANILPOTENT GROUPS*

THEOREM. Every finite 2-group G of class, two with cyclic, centre, either has the central decomposition

$$G\cong Q(n_1,r_1)\dots Q(n_{\alpha'},r_{\alpha'})Q(l,l)^{\epsilon_1}\dots Q(l,l)^{\epsilon_1},$$

where $\alpha \geqslant 0$, $\epsilon_i \geqslant 0$, i=1,...,1.

$$n_1 > \dots > n_{\alpha} > l \geqslant 1$$
, $n_{\alpha} > r_1 > \dots > r_{\alpha} \geqslant 0$.

$$1 < n_1 - r_1 < \dots < n_\alpha - r_\alpha$$

and Q(n.0) is the cyclic group of order 2ⁿ;

or else G has the central decomposition

$$G \cong R(n)Q(1,1)^{\epsilon_1}...Q(1,1)^{\epsilon_1}$$

where $n \ge l \ge 1$, $\epsilon_i \ge 0$, i = 1, ..., l.

The above decomposition is unique up to isomorphism.

The details of the paper will appear in the Journal of the Australian Mathematical Society.