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1. Introduction 

• The theory of Hardy and Nevanlinna classes in the 
unit disc U has been studied exhaustively for many years 
and constitutes one of the most beautiful chapters of 
complex function theory. (See (s], \:_14j) Throughout the 

theory, zero sets play a fundamental role because of the 
factorization theorems. Recently, generalizations to 
several complex variables have been vigorously pursued, 
firstly to polydiscs un (see l20J) and then to balls B 
and strictly pseudoconvex domains in tn (see [2s], [2~). 
Although some important results have been obtained, many 
problems remain and researchers in this area are still 
gathering momentum. It turns out that the theory in 
several variables has some similarities with the old 
one but 'possesses many new features. In what follows, I 
shall try to present some of the progress made in the last 
few years, particularly concerning the zero sets of 
functions in the Nevanlinna class. 

2. One-variable results 

Some . results of the classical theory are recalled 
here for motivation and for comparison. 

Let U be the unit disc in the complex plane £ and 
0 < p < ~ • Denote by H(U) the set of all holomorphic 

* Text of a scheduled survey talk which due to 
unforeseen circumstances was not delivered at the 
Colloquium. 
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functions in u. Define 
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The space N(U), HPCU) and H"'(U) are defined as the set of 

all f £ H(U) with ilfl!
0 

<"' 11fllp < "'and j:f[j"' < "' respec-

tively. For 0 < p < q < "' , it follows easily from Jensen's 

or Holder's inequality that 

The zero sets of holomorphic functions are charac­

terised by the following theorem. 

Theorem 2.1. Let~ be an open subset of~ . 

(a) If f £ H(~), f t. 0, then Z(f) = f- 1 (0) is a 

discrete subset of ~. hence countable. 

(b) (Weierstrass). Conversely, if Eisa discrete 

subset of ~. then there exists f £ H(~) such 

that E = Z(f). 

The zero sets of functions in N(U) are charac­

terized by the following. 

Theorem 2.2. 

(a) Iff£ N(U), ft. 0, and Z(f) = {an}~ listed 

according to multiplicities, then the Blaschke 

condition 
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( 2 . 1) 'f Cl-/a j) < oo 
1 n 

holds. 

(h) Conversely, if {an}~ is a sequence in U satis­

fying (2.1), then there exists f £ N(U) (in 

fact in H
00

(U) ) such that Z(f) = {an}~ 

For example, we can choose f to be the Blas­

chke product 

B(z) = 
"' ak-z 7T _;...;. __ _ 

k=l 1-akz 

3. Zero sets in several variables 

Let n be an open set in en. Denote points in tn by 

z = Cz 1 , ... ,zn). A function finn is holomorphic if it 

is holomorphic in each variable separately. Let H(n) 

denote the set of all holomorphic function in n For 

f £ H(n), the zero set Z(f) is given by Z(f) = {z £ n 
f(z) = 0}. 

A subset E of n is an analytic subvariety of n 

if for each a £ E, there exist a neighbourhood W of a 

and holomorphic functions f 1 , ... ,fk in W such that 

Ef"\ W = {z £ W: f 1 Cz) = ... = fk(z) = 0}. 

The zero sets of holomorphic functions have the 

following properties. (See [9].) 

(1) Z(f) is a pure (n-1)-dimensional analytic subvariety 

of n. Its regular points (i.e. where df # 0) form 

an (n-1)-dimensional complex manifold; its singular 

points form a countable union of lower dimensional 

complex manifolds. 

(2) (Cartan). Conversely, if the cohomology group 

H2 (n, Z) = O, and Eisa pure (n-1)-dimensional 
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analytic subvariety of n , then there exists f £ H(rl) 

such that E = Z(f). 

(3) The volume of Z(f) can be defined as the volume of 

the set of its regular points. We use the k-dimen­

sional Hausdorff measure Hk to denote the k-dimen­

sional volume. Note that H
0 

is just the counting 

measure so that H (A) is the number of elements 
0 

of A. 

(4) Zero multiplicity 

Let a £ n. If f : 0, define ~(a) = ~ . If f ~ 0, 

then f can be expanded in the form 

where each f. is a homogeneous polynomial of degree j ' J 

4. 

I z. I 
J 

II zl\ 

and fk t 0 Define ~(a) = k. 

~ is called the zero multiplicity of f at a. 

has the following properties ( [ 3]) . 

(i) ~ is an upper semicontinuous function in n . 

(ii) ~ is constant on each component of the set of 

regular points of Z(f), 

The ~eneralized Blaschke condition 

Let r2 denote the unit polydisc t:n = {z £ en 

< l, 1 ~ j ~ n } or the unit ball B n = {z £ en 

< l}. Let 

ar2 = Tn = {z £ iln : I z. I = 1' l ~ j ~ n} if n = 
J 

an = s2n-l = {z £ iln : II zil = l} if n = Bn 

Let m be the measure on an induced by the Lebesgue 

measure in en, normalized so that m(all) = 1. 

Define 
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ilfll = I lp 

llfll 0 = 

1 

sup {J lf(rw)lpdm(w)} P 
O<r<1 arl 

sup 
O<r<1 f + log I f(rw) ldm(w) 

ar1 

sup 
ze:rl 

I £<z) I 

The spaces N(rl), Hp(rl) and 

of all f e: H(rl) such that 

"' H (rl) are defined as the set 

11fllp < "' and llfll"' < "' 

respectively. For 0 < p < q < "'' we have 

The Blaschke condition (2.1) can be generalized and 

we have the following. 

Theorem 4 .1. (Chee [4], 1970) 

Iff e: N(rl), f ~ 0, and ~ is the zero multiplicity 

of f then 

( 4 .1) "' ' 

where rl(r) is the polydisc or ball of radius r 

When n = 1, (4.1) is equivalent to (2.1). In 1974, 

Malliavin [16] proved the analogous result for strictly 

pseudoconvex domains in fln. (See §8 below). 

5. Examples 

Theorem 4.1 shows that the generalized Blaschke 

condition is a necessary condition for the zero sets of 

functions in N(rl). We give some examples to show that it 

is not a sufficient condition for the zero sets of various 

subspaces of N(rl). 
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Definition: A subset E of n is a determining set 

(D-set) for a family '}- of holomorphic functions in n 
iff£~. f = 0 on E implies f = 0 in n, 

Theorem 5.1. (Chee [6]) 

For n ~ 2, there exists a pure (n-1)-dimensional 

subvariety V of Un such that V is a D-set for N(Un) and 

~1 

j H2n_ 2 (V(r))dr 

0 

where V(r) = V .~ Un(r). 

< co 

If n ~ 3, V can be chosen so that H
2

n_
2

(V) <"' 

Specifically, foro= 2, choose {ak} such that 0 < ak < 1, 

L: ak 
3/2 

= "'• 
5/2 

L: ak < co • 

Put vk = {<zl,z2) £ u2 

For n = 3, choose {ak} such that 0 < ak < 1, 

co, < co 

co 

v = u vk 
1 

The case n > 3 can be reduced to n = 3. 

Theorem 5. 2. (Chee [s]) 

there exists a pure (n-1)-dimensional 

V of Bn such that V is a D-set 

For n ~ 2 , 

analytic subvariety 

for Hp(B ) for all 
n p > 0, and 

< co • 

If n ~ 3, V can be chosen so that H
2

n_
2

(V) < co • 
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Specifically, for n 
-a 

= 2, choose a such that~< a< 1. 

rk = 1 - k , 
00 

vk = {z E Bz : Zz = rk}, 

1 
For n > 3, choose a such that n-1 

< a < 1. Let rk = 
00 

vk = {z E B z = rk}, v = u vk n n 1 

6. Comparison of zeros 

Let 

-a 
1-k • 

For one variable, functions in N(U), Hp(U) and H""(U) 

have the same zero sets (characterized by the Blaschk~ con­

dition). This is not true for several variables. 

Theorem 6.1. (Rudin [20], 1968) 

For all p, 0 ~ p <co, there exists f E Hp(U 2
), f ~ 0 

such that Z(f) is aD-set for H""(U 2
). 

Theorem 6.2. (Miles Ll7], 1973) 

For all 0 < p < q < oo , n ~ 2, there exists f & Hp(Un), 

f ~ 0 such that ZCf) is aD-set for Hq(Un). 

Theorem 6. 3. (Rudin =211 , 19 7 6) 

For all 0 < p < q <co, n ~ 2, there exists f & Hp(Bn)' 

f! 0 such that Z(f) is aD-set for Hq(Bn). 

7. Sufficient conditions 

we now consider the problem: Given a pure (n-1)-dimen­

sional analytic subvariety E of n = Un or Bn, find sufficient 

conditions of a me·~ic or geometric nature such that E is 

the zero set of an N(n)-function or an HP-function. 

By Cartan's theorem (see §3(2) above), this is equivalent 

to the following: Given f & H(n), f ~ o, under what con­

ditions will there exist an F t N(n) or HP(n) such that 

Z(F) : Z(f)? 

Until now, the problem has not been completly solved. 
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Some partial results are as follows. 

Theorem 7.1. (Rudin [2oj, 1967) 

If f t H(Un) and dist (Z(f), Tn) > 0, then there exists 
F t H®(Un) such that Z(F) = Z(f) counting multiplicities. 

Theorem 7.2. (Stout ~26], 1968). Solution of Cousin II 
problem with bounded data. 

Let {Va}a£I be an open cover of UIT. If for all a £ I, 

there exists fa t H®(Va(\ Un) such that for all a, e, fafa 1 

is invertible in H"" (V a(\ V e {'\ Un), then there exists F t H"" (Un} 

such that for all a, Ff~ 1 is invertible in H""<vafl Un}. 

By consideripg solution of Cousin II problem, Zarantonello 
obtained a zero set for Nevanlinna class. 

Theorem 7. 3. (Zarantonello ~0], 1974) 

Suppose n ~ 2, f t H(Un), and suppose there exist 

0 < r < 1 1 and a continuous function A:Lr 1 1} ~ {!,1) such that 

0.1) 
[ 
I z 11 + • • • + I 21n -11] lznl < A 

n-1 

for all (zl, •.• ,zn) t Z(f) (\ Qn(r,l) 1 where Q(r,l):: {z t e: 
r < I z I < 1}, then there exists F t N(Un) such that Z(F) :: Z(f). 

Using Theorem 7.1 and Theorem 7.2, we showed that F 
can in fact be chosen in H""(Un). 

Theorem 7.4. (Chee [s], 1976) 

In Theorem 7.3, F can be chosen in H""(Un}, This gene­

ralizes Theorem 7.1. 

a. Sufficient conditions in strictly pseudoconvex domains 

The case of the ball 
pseudoconvex domains in ~n 

B or more generally, strictly 
n 
has received much attention 
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lately, culminating in the remarkable results of Skoda and 

Henkin characterizing the zero sets of functions in the Nevan­
linna class. 

Let n be a relatively compact open set in en with 

ck boundary, k > 2. If there exist a neighbourhood W of 

an, a ck map p W -+ 4Z and a number y > 0 satisfying 

grad p # 0 on w, 

ll('\W = {z e: w : p(z) < 0}' and 

n a2p(z) 2 
L - en' w.w. > Y lwl ' w e: z e: w, 

i,j,k=l az.az. ~ J 
~ J 

then we say that n is a strictly pseudoconvex domain with 

Ck boundary. The unit ball Bn is a strictly pseudoconvex 

domain with c~ boundary; the unit polydisc un is pseudo­

convex. Hardy and Nevanlinna classes can be defined in such 

domains as the set of those holomorphic functions for which 

where · anr = 
anr induced 

~s], \la].) 

{z 

by 

sup J lflp dmr < ~ 
r<O an 

r 

sup J log+lfldmr < ~ 
r<O 

anr 

e: w p(z) = r} and m 

the Lebesgue measure on 

is the measure on r 
en. ~~' [24]' (See 

In 1974, Malliavin proved that the generalized Blaschke 

condition is a necessary condition for zero sets of functions 
in NCO). 

Theorem 8.1. (Malliavin '0-~J, 1974) 

Let n be a strictly pseudoconvex domain in en with 

C3 boundary. If f e: N(O), f ~ 0, then 
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(ILl) 

where o(z) = dist(z,an), ~ = z~ro multiplicity of f. When 
n = Bn, (8.1) is equivalent to (4.1). 

Zero sets with finite volumo were considered by Laville 

[is J and Gruman llOJ • Finally in 197 S, Skoda and Henkin 
proved independently that (8.1) is a sufficient condition 
for zero sets of N(n). 

Theorem 8.2. (Gruman [10], 1975) 

Let n t~ a strictly pscudoconvex domain in ~n with 
C' boundary, H2 (0,Z) = Q, Iff t H(O), f ~ O, H2n_ 2(Z(f)) 
< • then there exists F t N(n) such that Z(F) = Z(f) • . 
Theorem 8.3. (Skoda [2til, 1975; Henkin [12.L 1975) 

Let 0 be a strictly pseudoconvex domain in ~n with 
C2 boundary, H2 (0,Z) = O, H1 (n,R) = 0. 

If f t H(O), f t 0, and Z(f) satisfies (8.1), then 
there exists F t N(O) such that Z(F) = Z(f). 

Combining with Theorem 8.1 1 we see that the generalized 
Blaschke condition completely characterizes the zero sets of 

function in N(O), if 0 is the ball B or its generaliza-n 
tions, the strictly pseudoconvex domains with H2 (0,Z) = 0. 
However, no sufficient condition for zeros of Hp(O)-functions 
have been found. For bounded functions, we have the following. 

Theorem 8. 4. (Range and Siu [1i}, 197 3) 

Solutions of Cousin II problem wlth bounded data. 

Let n be a strictly pseudoconvex domain in 
C 2 boundary and H1 ( 0, Lq_*) = 0 where (.C:...* is the 
germs of non-zero holomorphic functions in n. Let 

tn with 

sheaf of 

{Va}at! 

be an open cover of 

fa t H"'<vaf" n> such 
n. If for each 
that for all a, 

a t 

e, 
I, there exists 

fafa
1 

is invertible 

in H""<v () 
a vef\n>, then there exists F t H""(n) such that 
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Ff~ 1 is invertible in H""cvCln S"l). 

When n is a strictly convex domain in n t , the above 

was proved by Stout [27 j in 19 7 3. 

Using the above result, Taylor proved the following. 

Theorem 8.5. (Taylor [29), 1975). 

Let n be U2 or B2, ~ e H(Q), f to. If 

an irreducible component of Z(f), then there exists 

such that V = Z(F). 

9. Applications 

We give here some applications of the results on zero 

sets discussed ab~ve. 

I. Interpolation 

Let E be a pure (n-1)-dimensional analytic subvariety 

in Un. A function g : E ~ t is holomorphic if for all 

z & E, there exist a neighbourhood W of z and a function G 
holomorphic in W such that G = g on E ~ w. By Cartan's 

Theorem B, (see e.g. [2 0, Th. 7 .12] ) , for all g holomorphic 
on E, there is a G holomorphic in un such that G = g on 

E. We wish to consider the problem: If g is bounded on E, 
can its extension G be chosen to be bounded on Un? A set 

E for which this is possible for ~ bounded g is called an 
interpolation set. For n = 1, interpolation sets are charac­
terized by L. Carleson in 1958 as the set of all uniformly 

separated sequences in U. (See [a].> For several variables, 

we have the following partial results. 

Theorem 9.1. (Alexander [:1,], 1969). 

Let n ~ 2, E is pure (n-1)-dimensional analytic sub­
variety of Un such that 

(9.1) dist(E,Tn) = r > 0, 
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there exists ~ > 0 such that if 1 < i < n, 

( 9. 2) ( 
o. t S, 

( z ' , a , z " ) and ( z ' , S , z" ) £ E 
n-i J x Q (r,l) then lo.-el ;: 6. 

Then E is an interpolation set. 

Using Theorem 7.4 and a result of Andreotti and Stoll 

[2} , we obtained a generalization. 

Theorem 9.2. (Chee [s-·1 , 1976) 

Let n ~ 2, E a pure (n-1)-dimensional analytic sub­

variety of Un which satisfies (7.1) and (9.2). Then E is 

an interpolation set. 

For strictly pseudoconvex domains, Henkin has proved the 

following remarkable result. 

Theorem 9.3. (Henkin [1~], 1972) 

If ll is a strictly pseudoconvex domain in n Cl , and 

E is a submanifold (i.e. an analytic subvariety without 

singularities) of ll in general position, then there exists 

a bounded linear operator L : H
00

(E) ~ H
00

(1l) such that 

Lg = g on E. 

II. Removable singularities 

Suppose E is a closed subset of Un, f £ H(Un-E). 

For 0 < p < oo, we say that f £ HP(un-E) if lflp has an 

n-harmonic majorant in Un-E. The problem is: For what E 

is it true that every f E HP(un-E) extends to an F £ Hp(Un)? 

Theorem 9.4. ( Parreau [1a] , 1951) 

If n = 1 and 

every f E HP(Un-E) 

E has logarithmic capacity zero, then 

extends to Hp(Un). 

Theorem 9.5. (Shiffman [22] , 19 6 8 ) 

Suppose n > 1, 

extends to H
00

(Un). 
H2n-1 (E) = 0. 
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Theorem 9. 6. (Cima [7], 1974) 

Suppose n > 1, 1 ~ p ~ oo , E a pure (n-1)-dimensional 

analytic subvariety of Un satisfying (9.1). Then every 
f £ HP(un-E) extends to HP(Un), 

Using Theorem 7.4, we obtained a generalization. 

Theorem 9.7. (Chee [5], 1976) 

Suppose n > 1, 0 > p > oo, E a pure (n-1)-dimensional 

analytic subvariety of Un satisfying (7,1). Then every 
f £ HP(un-E) extends to HP(Un), 

Recently, Harvey and Polking (1~ have obtained some 
interesting results on removable singularities. 

10. Open problems· 

We list here some problems which naturally arise out of 

the above discussion. 

(1) Find sufficient conditions for the zero sets of functions 
N(Un), Hp(Un), Hp(Bn) and H~(Bn), 

(2) Is it true that if 

finite volume? 

co 
f £ H (Bn)' n > 2, then Z(f) has 

(3) If E = Z(f) for some f £ H..,(Un) and satisfies (9.2), 

is E an interpolation set? 

(4) If E = Z(F) for some F £ HP(un), and f £ HP(un-E), 

can f be extended to Hp(Un)? 
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