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A sum of the form

n
T f(x
r=1

r+1’xr+2""’xr+n)’

where Redn Lot for each s and n is a positive integer, is
called a cyelic sum. If this sum is denoted by

Fn(xl’x2""’xn) then it is clear that

Pn(xs+1‘xs+2""‘xs+n) = Pn(xl,x2,...,xn)

for each s. It is.because of this that the sum is called

a cyelic sum.

In this paper we are concerned mainly with inequa-

lities for the cyclic sum

n X

SRy ah. vils o sR LS T r—t e
e ok 5 r=1 Xp+1 * Xpe2 .
where x_, = x > 0 and x_,, *+ x_,, > 0 for each s.

It is trivial that S;(x;) = % and Sa(x;,x2) = 1.
In 1903, A. M. Nesbitt [1] asked for a proof of the

inequality

Sslx1,x2,%3) 2 % .

(Three known proofs of this are given in the appendix
to this paper).

Over 50 years later, in 1954, H. S. Shapiro [?}
asked for a proof of the inequality

Sn(X1 3 X2 30 0 ’xn) 3 ;—l
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for all positive integers n. At the present time it is
known that this inequality is true for all n £ 10 and false
for all even n 3 14 and all-odd n > 25. For each of the
remaining values of n (namely 11, 12, 13, 15, 17, 19, 21
and 23) it is not known whether the ineugality is true or

false.

H. S. Shapiro proved the inequality for n = 3 and
n =4 and C. R. Phelps for n = 5, but their proofs have not
been published. L. J. Mordell [3] and the author .[H]
proved the inequality for 3 £ n g 6. Later D. Zix Djokovic
[}] proved the inequality for n = 8. Using this result,
B, Bajganski [6] and the author [73 proved that the
inequality holds for n = 7 also. More recently, P. Nowosad
[8] proved the ingquality for n = 9 and 10.

M. J. Lighthill (see [9]) proved that the inequality
is false for n.= 20. He himself extended his method to
prove the inequality false for n = 14. His proof has not
been published. For n = 14, using Lighthill's method, A.
Zulauf (id] and M. Herschorn and J. E. L. Peck [1ﬂ
proved the same result. That the inequality is false for
all even n > 14 follows from this, since it can be easily

seen that

Sn+2(x1,xz,...,,,,xn,xl,xz) = Sn(xl,xz,...,xn) + 1,

. R. A. Rankin [12], using Lighthill's result for
n = 20, proved that the inequality is false for all suffi-
ciently large odd n. Later A. Zulauff [lé] proved that
the inequality is false for all odd n 3 53. This was
improved by the author [7], who proved that the inequality
is false for allodd n 3 27. Later, D. E. Daykin [14]
and M. A. Malcolm [151 proved that the inequality is
false/for n.= 25.

In his paper [15) Rankin also proved that there
is a positive number A < % with the property that
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Sn(xl,xz,...,xn) 3 An

is true for all n, but

Sn(xl,xz,...,xn) 2 (A+e)n

is not true for all n and all X15X250 005X however small

€ > 0 is. He stated that he could prove that A > 0.3. Later
he '16] published a proof showing that A > 0.33. The
author proved that A > 0.45 in [}7] and later that A > 0.u46
in {ls]. More recently V. G. Drinfeld (19] has proved
that A = 0.494

In [u] and f?OJ, the author investigated the
inequality
X
r

>,
¥ ...t 7
4+l Xp+2 *TXpem

HM3
3|9

X o b ane e S
Tn( 1sX2 RN %

r=1

v

SR e 0 for

= > *
where x X, > 0 and x_ .4 Xg49 poew

n+s s
each s, and proved that the inequality is true if

n|m+2 or 2m or 2m+l or 2m+2,

or n|m+3 and n = 8 or 9 or 12,

12.

.of n|m+4 and n
For m > 3 it is not known whether there are any other (m,n)
for which the inequality holds.

D. E. Daykin [l&J considered the inequality

n 2xr t
4 —— > 0,
r=1 (xr"’l+ xr'+2>

where x Fekary Deande® FaX > 0.for each s, and

s+n s s+l s+2
proved that it is true for t 3 2. Using his method, the

author [Qi] proved that the inequality is true for t 3 ﬁé%l
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The smallest T such that the inequality is

true for all n and all t > T is not known.

Other related inequalities have also bzen studied

by various authors (see, e.g., f3], [H], {1&], {lf], [18]
and [?QJ to [24]). An expository account of cyclic
inequalities, covering many of the publications up to 1968,
is given in the book [?5] by D. S. Mitronovié.

10.
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Appendix
Below are three proofs of the inequality
3
S3(x14%2,%3) > 5

First proof. The inequality is equivalent to

X1+X> b X3TR) + X2tX3 + X1+tX2 + X3tXy . Xo2tX3
X2+X3 X2t+X3 Xatx) X3tx) xX1tX) Xafxalfl i

which follows from the inequality between arithmetic and
geometric means.

This proof can be generalized to prove that

Sn(xl,xz,...,xh) or Sn(xn’xn-l""’x‘) > % .

Second proof. The inequality is equivalent to

1 3 =L 9
+xX 2+ - + : =
S B £ A TLT T T TR T TR
which is true, since
G N e 3

A7 >
3 XotX3 X3 *+X) X1*+X2 ) 2 2(x1+x2%X3)

by the inequality between arithmetic and harmonic means.

This proof can be generalized to prove that

e m+1
> —= .

T +1(x1,xz,...,xm+l 5

m

Third proof. Considering S;(xX;:;X;,%X3) as a weighted

1 1 J:

sum of
s T e R TE s S e S ]

with weights X1, X2, X3,

respectively, we can see that

(X1+X2+X2)2

S3(x X 2
2(X1,X2,%3) 2 TR TR ) ¥, (R Fx1 ) ¥ 5 (K1 72

= KRS -~




by the inequality between weighted arithmetic and harmonic
means. Hence the inequality S3 > 3/2 follows if we can

prove that the quadratic form
2 3 2, 3
(xy+x2+x3)° - 5 X1 (xX2+%x3) - 5X2(X3+X|) - 5X3(X1+X2)

is positive semi-definite. This is true since the quadratic

form is equal to
(x)-3x,-%x3)2 + %(X2-X3)2 5
This last proof is more complicated than either of

the other two proofs. It can, however, be generalized

to prove that

n
.Sn(xl,X2,...,Xn) z 5

for n = 4,5,6 (see [MJ), and also to prove all the known

true cases of

MApRalgl e iy PRls
n 1942 >%n “m

for m > 2 (see [u], (2QJ).
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