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It has been said that geometrical intntion provides
the clearest, if not the shortest,; path to solutions of
problems. In this note I shall éive a geometrical meaning
to a very simple and well known problem in elementary pro-
hability. Before I set out to define the problem, let me
add that although the geometrical approach will appear a little
too sophisticated for this problem, this way of thinking
has influenced to a large extent the development of certain
areas in probakility and statistics - for example, time
series and linecar statistical inference.

In almost everv elementary textbool on probability
or statistics, it is stated that the second moment of a
random variable X about any real number c is minimum when
¢ = EX, that is

var (X) = min E(X~-c)? ,
a

There are two proofs which we would normally f£ind in these
books. One is by calculus : E(X-c)? is expanded into
EX? - 2cEX + c? whose derivative with respect to ¢ is
then equated to zero to yield the solutior ¢ = EX. The
proof is completed by showing that the sceco-.’ derlvative
is positive. The other proof is algcisraic which depends on the
completion of a scuare :

(1) E(X-c)? = EX? - 2cEX + c?

EX?2 - (EX)? + (EX-c)?

= var (X) + (EX-c)?
ot '

AF(ch)z is var(X) which

Clearly the minimum value
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corresponds to ¢ = EX. etimes the algebraic proof is

presented in a slightly different version as follows :

(2) E(z~c)? = E[(X-EX) + (EX~c)]?

E(X-EX)? + 2E(X-E¥) (EX~c) + (EX-c)?

var(x) + (EX-c)?

product term vanishes.

-

vhere the cros
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Ve shall now take a geometrical approach to this
problem and give a geometrical interpretation ol the
algebraic proof. ¥e shall see that the geometrical approach
will provide a deeper insight into the p»roblem. Let us bkegin
with the simplest case where the random variakle X takes
on the values X14X25 000K, with equal prokalbilities 1/n.

=1 0 >
Then E{¥=c)?.=n ligl(x4mc)2. i"ith a little ineagination; we

see that the expression .z (x.«c)2 is nothing but the sguare
cf the distance between t“o Lhn POt D 2 (Brarses X ) and

P

Q z.(c,:s.7C) In n-dimensional Puclidean space; that i the
set of all n-tuples of real nunbars with the operations of

addition and scalar multiplication defined as follows :

(:Y’li'°-;7yn) + (217"°i’2 ) = (“‘_]1"2'32‘.1;..\.;Ynzn),

n

a(y;,...,yr) = (ay;,..,,ayn) for svery real numbker a,
& -

ard the distance baetwszen two points ("1,...,3 ) and (z1,...,zn)

Gefined to re [(yvi1=z1)2 + ... + (v,"%,) o If wa vary

the values of ¢, we see that the péint 0 moves along the

1ine Ljoining the origin C-and the point T = (1,...,1); that
is the set of {F :

a(l,.e0.,1), ¢c'is a real numberi.
It is clear that if the geometry of 3-dimensional space can

extended to that of n-dimensional space, then T (i-c)?

oy
O

al
g ninimum when ¢ is the "foot of the perpendicular” from

o

-

the point P to the line L (see Figure 1). (The reacer is
recommended to picture thc problem in 3-dimensgioral
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Euclidean space.)

T

Figure 1

So we set out to define the notion of an angle
between two vectors in n-dimensional Fuclidean space.
Where ambiguity does not arise we shall for simplicity
use the same notation for a point and the vector from
the origin to the point. For example, let R and & he two
points whose coordinates are Yireoor¥y and ZroesssZy
respectively, and let y = (yl,...,yn) and z = (z;,...,zn).

Both the point R and the vector OR will bhe denoted by
(y1,...,yn) or more simply by v. Likewise the vector from
the origin, which is parallel and equal in magnitude to

the localized vector SR, will be denoted ky (v1=Z1s...,
yn“zn) or more simply by y-z. We first define the inner
product (v,z) of two vectors y = (yl,...,yn) and z = (zl,...,zn)
as the sum yi12; + ... + Yn%n * Note that this is an n~
dimensional analogue of the dot product in 3-dimensional
vector analysis (see for example Cunningham [1] s ;PD« 29=38) .
It can easily be verified that the inner product so defined
satisfies the following properties :

(a) (y.2) = (z,y) ;

(b) (y+z,w) = (y,w) + (2,w) ;

(c) (ay,z) = a(y,z) for every real number a ;
(@) - fv.y) 0O

(e) (y,y) = O if and only if y = (0,...,0) .
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The norm or length of the vector y, denoted by ||yl is
defined tc be (y.y);i .  Thus the distance between the-

two points (y1,...,yn) and (z;,...,zn) is the norm of the
vector y-z where v = (yl,...,yn) and z = (zx,...,zn).

We now use the properties (a) and (d) to prove the
Cauchy-Schwarz inecuality :

ltv,2)| £ |ivhllzll .

Let A = || yI?, B = (v.2) and ¢ = ||zH2 . For every real number
r we then have

(3) || y-rzl|*> = (y-rz,y-rz)
= (y,y) b= 2riy.2) + x?(z,2z)
=l Al 2 - 2r(v,2z) + r2|izll?
=A - 2Br + Cr? ,

Since the expression on the left of (3) is nonnegative, we must
have A - 2Br + Cr? 2 0 for every real number r. Now C2 O .

If C = 0, then B must be zero and the inequality B? £ AC

is trivially true; otherwise by choosing r = (A+l)/B we get

the absurd statement that -A-=2 20 . On the other hand if

C > 0, then by choosing r = B/C we get B2< AC . This proves
the Cauchy~Schwarz inecquality.

Note that there is a great similarity ketween (1) and
(3) . Eowever while the CTauchy-Schwarz inecuality may be proved
by completion of squares, we have seen that the proof need
not be so. On the other hand, it does not seem pussible to
avoid completion of scuares in minimising the cguadratic ex-
pression in ¢ in (1) by algebraic method.

The Cauchy-Schwarz inequality enables us to define,
as in 3-dimensional case, the angle 0 (0_5 0 € 1) between
the two nonzero vectors y and z by

5 (¥,2)

Telilzll

Cos
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FEence twe vectors y and z are said to ke orthogonal or
perpendicular to each other if and only if (y,z) = 0.
Next we see that Pythagoras' Thecrem holde. Indeed,
let y and z be two orthogonal vectors. By (a) and (b),

(4)  |ly+z If

(y+z,y+z) = (v,v) + 2(y.2) + (2,2)

Iy 12 + =z 12 ,

(see Figure 2).

Yyt

0 J

Figure 2

To find the value of ¢ for which E(¥-c)? = n“1“x~g||2
is minimam where x = (xl,...,xn) ana E= (G v, 0) =
c({l;...,1) amounts now to finding the wvalue of c for which
QP is orthogonal to OT (See FPigure 1); that is
(3) (x-£,e) =0

where e = (1,...,1).  Now by .(h) and (c),

(x-E,2) = (x,e) - (E,e) = (x,e) - c(e,e)

n

3 at iélxi - Hg" = r(BEX<t)
and so (5) yields c = EX.  UHNote that (5) is ecquivalent to
the equation obtained by ecuating the derivative of EX? -
2CEX + c? to zero, and we obtained it without differentiation.
Let EO = (EX,....EX) and Qo be the point with coordinates
EXs..+.,EX.. The point Qo is defined to be the foot of the
perpendicular from P to L and the vector £_(0Q,) is defined
to be the orthogonal projection of the vector x(OP) onto
the line L. To see that |[|x-£ ||® must be the unicue minimum

value we use Pvthagoras' theorem. First we note that by (c),




X and ay are orthogonal if x and y are, where a is any
real number. Therefore the vector x-§ (QOP) is orthogonal
to the vector gwgo (QOQ)since £m£a= (c=EX)e. FEence

(6) X=E] = pix=E ) % §5.~E) If
= flx-g I + Hz -2 .
If g&+ Eo’ then by (e), |l§o-g|P > 0. This shows that

[x=€|*> (and hence E(X-c)? achieves minimum value at the
unicue point £ = Eo (namely for c = EX).

Now we can give a geometrical interpretation of the
algebraic proof which is nothing but an application of
Pythagoras' Theorem. This fact is particularly apparent
when we note the similarity between (4) and (6).

Suppose X takes on the values Xl"“ﬁ’xn with
: , R iay2
probabilities PlieeesPpe Then E(X-c)*‘ = i;lpi(xi c)

which is not the sguare of the distance hetween the points
P and Q in the ordinary sense. However, if we examine

our geometrical proof carefully we see that all that is
needed is the definition of an inner product which must
satisfy the properties (a) to (e) and which is such that
E(X-c)? is proportional to the norm scuare of x-£, where
X = (xl,.q.,xn), Ei= (Cises8;C), ard the norm or length

of a vector is defined to be the scuare root of its

inner product with itself. The rest of the proof is just a
consequence of these properties. So we define a new

inner product by

n

2.p,v,7
natiofi]

(v,2)

whege Y = (Yis...,¥,) and z (Z17.+.,2,) . Then E(X=-c) ?

=2 p; (xy4~c)? = [|x-E||*. Note that the norm or length
i=1 z

|[y|l of a vector y no longer has the ordinary meaning. I
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leave it to the rcader to verify that the inner product
just defined satisfies the properties (a) to (e). This
heing so, the value of ¢ for which F(X-c)? is minimum
can be determined in exactly the same wav as before.

What if X takes on an infinite (but countahkle)
number of values Xi,X2,... With respective probakilities
P1,P2,..- 2 In this case we have to consider an anpro-
priate "infinite-dimensional®” space which is the set of

all infinite sequences of real numkers (vi,¥2,...) such
o0

that Zajyi converges, and with the operations of addition
i=1

éﬁd scalar multiplication defined by
(V19720 ece) ¥ (21 ;20 5nevd. ™ (V1323 ,Y2 227 55)
and
alyi1;¥2s.4.) = (avi1,ay2,...) for every real number a .

Each vector is now identified with such an infinite
sequence. Then we define the inner product hy

oo
(7,2) = JZ:I Py¥42%4

[}
and the norm Jly|| of the vector y by flyl) = (y,yf&
The inner product can he shown to satisfv the properties (a)
and (e). Again F(X-c)? = || x-g||?>"whete x = (x},%x3,...)

and £ = (c,C,...) « The rest of the proof is clear.

To solve the proklem in its utmost generality, we
need to consider the space of all real-valued functions
f (strictly speaking,equivalence classes of functions)
defined on the real line such that thc Lebesque-~Stieltjes
integral ~ffz(u)dF(u) is finite where F is the distribution
function of the random variable X. The operations of
addition and scalar multiplication, and the inner product
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and the norm are defined in an analogous way as in the

special cases :
(£+g) (u) = £(u)+g(u),

(af) (u) = af(u) for every real number a,

(£.9) .gf(U)g(u)dF(u)

and

=1l

Again the inner product satisfies the properties (a) to
(e) and E(X-c)? = \S(uzc)zdF(u)
now the identity function and £ the ccnstant function

(fewrar w)*

]

|| x-£ 1> where x is

with valus ¢. As kefore c = ‘judF(u) = EX corresponds
to the minimum value of F(X-c)?2.

The reader can sce that, in the foreqoing dis-
cussion; the general difficulty of the material increases
with the level of generalization. Fowever the geometrical
concepts and properties remain the same throughout. So
does the method of proof. This is the advantage of
abstraction. The above geometrical approach in an example
of abstraction, and in taking this approach we have
touchad on the basic comcepts and properties of a very
important ohject in mathematics =— the Eilbert space
(see Rudin [2], pp. 79-29).
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