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It has been said that geo~etrical ~n~~tion provides 

the clearest, if not the shortesti path to solutions of 

proble..."'ls. In this note I shall give a geometrical meaning 

to a very sir.1ple ancl v<1cll known problem ir elementary pro·· 

hability. Before I set out to define the probla>n, let mEl 

add that although the geonetrical approach will appear a little 

too sophisticated for this prohlem; this way of thinking 

has influenced to a large extent th~ development of certain 

areas in probability and statistics ~ for example 8 tir:1e 

series and linear statistical inference. 

In almost every elementary textbooJr. on probability 

or statistics 8 it is stated that the second moment of a 

randon variable X about any real number c is minimum when 

c = EXv that is 

var(X) =min E(X-c) 2 
, 

c 

'rhere are tl-!O l-:>roof s which \'70 \''Ould normally find in these 

books. One is by calculus ~ E (X-c) 2 is f.:xpc:mded into 

EX 2 
- 2cEX + c 2 v,7hosc derivative v1ith respect to c is 

then equated to zero to yield the solutior c = EX. The 

proof is completed by sho'Vling that the sec0--:..:. \.ler ..:..vative 

is posi tivc. The other proof j_s algc~.Jraic "Ihich depends on the 

completion of a s~uare 

(1) 

o-f 
Clearly the rninimu.rn value 1\E (X-c) 2 is var (X) "'1hich 
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- . corresponds to c == EX. Sometimes t.hc algebraic proo~~ 1.s 

presented in a slightly different version as follows ~ 

= var(X) + (EX·c) 2 

Hhcre the cross product term vaniohes. 

~ic sl>.all nm·l take a g9o:Jetrical approach to this 

proble::-:1 and ;rive a rJeometrical interpretation of the 

al')ebraic proof. \:~;;; shall ser:: that the geonetrical ~p1:.-roach 

\.vill provide:: o. decpr."!r insi.ght into the :rrohlem. Let us begin 

vTit: .•. !':he siDplest case ~Jhere thP. randor:.~ variaJr:le X takeG 

on the values XlrX2u•··•x ~ith e~ual -_~ro~abilities 1/n. n ... 
•o·l n -

rrhen E (X -~c) 2 = n i~l (xi. ···c) 2 
• r:-i th a little it; C....J ina tion. r v1e 

j"\ 2 ·• 
see that the expression i~l (;~i =C) J.B nothing ~JUt the square 

of thr2 disti'l.nce bE;twccn the ·tb.c r:oints p = (x 1 r • •• 7 ~{11.) and 

Q = (c, ... 2 C) in r:.···dirrK""r,sJonal :F:ucl.idean r>pace,: that is the 

set of all n~~tunlt.:s of. :coal 1".1lDb:J:::;:; \o,'ith the operations of 

addition an!1 scalar ;.mll·tiplication clef i:n.ec 3.S follo\':s 

(""\ll;ooo;~-1) -{- (Zlvooa,·2.} = (~.11·1-ZlrcoCle·' V Z )il 
~ ~n n ~ ' '-n n 

for ev0ry real m .. nnber a 6 

anJ the distance h'3t~,:e2n t~!O points (v1; o o. ,·.,.·n) and (Zl, ••• ,zn) .. ~ -l 

defined to ~e [(v1-z 1) 2 + ••• + (v =z ) 2 1~. TF ve var_r • ,~n. n. _.A 

the values of c, iJ'G see that t~:J.E: :;oint 0 r-~ovos alons the 

line L joining the origin 0 and tho ~oint~~ (l,.o.,l)~ that 

is the r::.;c;;t of {,S ~ s = c(l, •.• pl), c ic.; a real nur:l!.Jc~r}. 

It is clear that: i<" the •::;eomst::-y of .3 d,j_r'!ensional s~:>:1ce can 

be: extended to that of n=di.mcm~:d.onal s:JaCE' 1 t.:hon P (:~·~~c) 2 

is ninii1.u,.'TI. 't•'her.. G is the '~foot of t!J.e pGrrcnd.icular 'J frOl':l 

the point P to the l1ne L (see Figure 1) • ('I":w roac:er is 

recor:r..-.:u:mded to picture the pro:·.)le~n in 3, dimensior:>.al 
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Euclidean space.) 
p 

L 

0 Figure 1 

So we set out to define the notion of an angle 

betueen t'VIo vectors in n ~·dimensional Euclidean space. 

P'here ambiguity does not arise ue shall for simplicity 

use the same notation for a point anu the vector from 

the origin to the r>oint. For example, let R and S he b,ro 

paints ,.,hose coordinates are y 1 , ••• ,, y 
11 

and z 1 r ••• r zn 

resoectivelv 7 and let v = (V1r··· 1 v) and z = (Ztt••••z). 
- - ..z - _·n n 

Both the point R and the vector 0~ ~;rill be denoted by 

(yt 1 ••• ,yn) or more simply by ~'. Likev-Jise the vector from 

the origin, ~rlhich is parallel and equal in magnitude to 

the localized vector sn, uill be denoted ty (yl ~ zt, .•• 1 

v ·- z ) or more simnlv by y~z. Ne first define the inner -n n ,;;- ~ 

product (y,z) of t\ro vectors y = (Yt•···•Yn) and z = (Ztr••••zn) 

as the sum YtZt + ••• + y z • Note that this is ann~ n n 
dimensional analogue of the dot product in 3=dimensional 

vector analysis (sec for example Cunningham [ 1] , pp. 29·~ 38). 

It can easily be ~erified that the inner product so defined 

sa·tisfies the follm7ing properties 

(a) (y 1 Z) = ( z, y) ,, 
• 

(b) (y+z 1 \ •.') = (y i 'V'!) + { Z I TJ) , 
(c) (ay, z) = a(yl'z) for every real n lli"ilb e r a 

(d) (:! ly) 0 

(e) (yly) = 0 if and only if y = (0, ••• .,0) 
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The norm or length of tho vector y, denoted by II y 1\, is 

dof.inod tc bo (y ,y} ~ • Thus the distance between the · 

two points (yl;•••tYn) and (Zlv•••vz) is the norm of the n 
Vector y··Z '~::'here u = (yl 7 ••• ,y ) and Z = (21 r . • • uZn}. 

~ -n 

'He nO't'l usc the properties (a) and (d) to prove the 

Cauchy--Schv-rarz ineauali ty ~ 

Let A = II y 112 
v B = (y v z) and C = llz~ 2 

· • For every real number 

r 'li'le then have 

(3) II y~rz 11 2 = (y-rz,y-·rz) 

= A - 2Br + Cr 2 
• 

Since the expression on the left of (3) · is nonnegative, He must 

have A - 23r + Cr 2 ~ 0 for every real number r. Nou C ~ 0 • 

If C = O, then B must he zero and the inequality B2 ~ AC 

is trivially true1 otherwise by choosing r = (A+l}/B we get 

the absurd statencnt that ~A=2 ~0 • On the other hand if 

c > 0, then by choosing r = Bjc ~·m get B 2 ~ AC • This proves 

the Cauchy ···Sch\?arz inequality. 

·Note that there is a great similarity bebmen. (1) and 

(l) Ho·wever Hhile the Cauchy~Sch'ltrarz inequality may be proved 

by completion of squares, V!e have seen that the proof need 

not be so. On the other hand, it does not seem pcssible to 

avoid completion of squares in minimising the quadratic ex­

pression in c in (1} by algebraic method. 

Tho Cauchy,,Schv?arz inequality enables us to define, 

as in 3-dimension.al case 1 the angle 0 {0 ~ 0 ~ 1r) beb.reen 

the two nonzero vectors y and z by 

Cos 8 = 
II Y I\· II z 1\ 

·~ 163 ~-



Hence tl•JO vectors y and z are said to te orthogonal or 

porpendicular to each other if .J.nd only if (y,z) = 0. 

next ·1:m see that Pythagoras s TheoreM holds. Indeed, 

let y anG. z be bvo orthogonal vectors o By (a) and (h), 

(4) Jjy+zW = (y+z,y+z) = (y , y) + 2(y:z) + (z,z) 

= IIY 11
2 + rfz 11

2 

(see Figure 2}. 

0 
Figure 2 

~- 1 
To find the value of c for \<Thich E (X-c} 2 = n jlx~t; 11

2 

is minimUm where· x = (x1, ••• 1 xn) and~= (c, ••. ,c) = 
c ( 1 r ••• , 1} amounts no\<J to finding the value of c for tr!hich 
-QP is orthogonal toOT (See ~igure 1}; that is 

{5) {x=~ re} = 0 

where e = (1, ••• vl) o N0\<>7 hy (h) and (c), 

and so (5} yields c = EX. Note that (5) is equivalent to 

the equation obtained b::.• ec:ua-ring tho derivative of EX 2 
-

2cEX + c 2 to zero 0 and \A?e obtained it uithout differentiation. 

Let ~0 = {~X, •.. ,EX) and Q
0 

he the point with coordinates 

r-v r.x ,.,. · t 0 · ~ .r- • c1 t. ' t 1 f t f th .... ;. ~, ••• , -" • • .c s:.c po~n __ 
0 

~s a.e.::: ~ne o DC tt_:_ -oo o · • e 

perPe ndicular from P to L and the vector ~ {OQ } is defined 
- 0 0-

to be the orthogonal projection o~ the vector x(OP} onto 

the line L. To see that II x =- ~ 0 11 2 must be the unique mininun 

value v!e use Pythagoras l thcorE.n. Firnt \•!e note that by (c), 



x and ay are orthogonal if x and y are, where a is any 

real number. Ther-efore the vccto~ x=~ (Q P) is orthogonal 
0 

to the vector t>~~ 0 (Q0~) since ~ .,.~., = (c~·EX} e. Eence 

If s~ + so v then by (e) v II ~0 -s 11 2 > 0. ':'his shm··s that 

II x~s W (and hence E (X-c) 2 achieves r..1ininurr. value at the 

unique point s = s
0 

(namely for c = EX) • 

i::~0¥1 \ve can give a geometrical interpretation of the 

algebraic proof v.rhich is nothing but an ap:>lication of 

Pythagoras' Theoren. This fact is particularly apparent 

when 'Ne note the similarity beb.recn (4) and (6). 

SuppoeG X takes on the values Xlv···•x with n n 
probabilities Plr···•Pn· Then E(X-c) 2 = .r1o. (x.-c) 2 

~- - l. l. 

~"lhich is not the square of the distance between the points 

P and Q in the ordinary sense. Hovrevcr ,, if ~10 examine 

our geometrical proof carefully 't:?e see that all that is 

needed is the definition of an inner product ~dhich must 

satisfy the properties {a) to (e) and which is such that 

E (X~·c) 2 is proportional to the norm sauarc of x=s, v1here 

x = (Xl, ••• ;Xn), s = (c , ... ,c) 1 aY:'i.d the norm or length 

of a vector is defined to be the square root of its 

inner product with itself. The rest of the proof is just a 

consequence of these properties. So \'!e define a ne-v: 

inner product by 

n 

= £: p.y.z. 
i=J .l. l. l. 

\>Jhere y = (yl 1 ••• ,yn) and z = (z 1 ;- • .,. z ) . Then E (X~c) 2 
n n 

= L p. (x.~c) 2 = Jlx-sW· Note t:"lat the norr.-~ or length 
i=J l. l. 

1/YII of a vector y no longer has th~ ordinary meaning. I 
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leave it to the r0adcr to verify that the inner product 

just defined satisfies the properties (a) to (e) • This 

heing so, the value of c for vihich F: (X~c) 2 is minimum 

can be eetermincd in exactly the same way as before. 

;:·"'hat if X takes on an infinite {but counta}:-,le) 

number of values x1 ,x2, o o. i''ith respectj.ve !?robabilitics 

.91 rP2, ••• ? I!l this case ue have to consider an appro= 

priate 7Jinfinitc·~dimcnsional'1 space ~!rhich is the cet of 

all infinite sec::uences of real numbers (y1,y2, •.• ) such 
(X) 

that ,L:: y7 conve::-gcs, and T·?it!1 the operations o£ addition 
. i=l 1 

and scalar multiplication defined by 

and 

Each vector is now identified with such an infinite 

sequence. ':'hen \..,e def lne the inner product by 

()<) 

= L: n.y.z 1 - 1 1 -i-=.1 

and the norm IIY\\ O
.e 
J- the vector Y by tl y \\ -: !12. (y,y) 

The inner 

and (e) • 

and t_: = 

product can he shm,m to satisfy the properties (a) 

.Again F(X-c) 2 = llx- t.:!l 2 ~~.rncre. x ~ (xi,x~,.o.) 

(c 1 c, .• o) • ~ha rest of the proof is clear. 

To solve the proble:1 in its ut:nost generality, ~.-;e 

need to consider the space of all real·~valucd functions 

f (strictly spcaking,equivnlence classes of functions) 

defined on the real line such that tho Lebescrue .. ~Stieltjes 

integral J f 2 (u}dF (u) is finite ~ . .o~here F is t~e distri;iution 

function of the rando~ variable Xo The operations of 

addition anc scalar multiplication, and the inner product 
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ar.d t:1.c, norm are dcf incc~ in an analogous vray .::ts in the 

special cases ~ 

(f+g) (u) = f (u) +g (u) , 

(af) (u) = af(u) for ev~ry re~l nQ~ber a, 

(f 'g) = j f ( u ) g ( u ) dF ( u) 

and 

Again the inner product satisfies the Droperties (a) to 

(c) and E (X-c) 2 
-- J (u~c) 2 C:.P (u) -· \1 x~ ~ \1 2 v•-.ere x is 

novJ U'.e identit:I funcJcion and ~ the cor.stant function 

~.vith valuG co As before c = J uaF (u) = EK corresponds 

to the minimum value of B (:X·~c) 2 • 

The reader can see thatr in the forc~oing dis ­

cussionr the general difficulty of the material increases 

''lith the level of generalization. rm'.' <.wer the geomc~trical 

concepts and :::ropcrtics rar.:1.::ir.: the same; throughout. So 

docs the method of proof. This .is the advantage of 

abstraction. The above geo::J.e·tr icu.l approach in an example 

of abstraction, and in taking this a?proach we have 

touched on the basic concepts and properties of a very 

important object in mathematics 

(see Rudin [2], pp. 79 - 99). 

the Eilbert space 

[1] 

[2 J 
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