TEACHING NOTES

The provinz of Cayley’s theorem at Further Mathematics level
Oey Liang Hien

Ubdouhbtedly one of the hardest theorem to prove in "A"
level syllabyg of Further Mathematics is Cayley’s theorem in
group theory : "Tvery finite rroun of order n is isomornhic to
a permutation croup on n symhols." This poses to teachers who
must teach the theorem at pre-university level a challenre to
make their students understand it and its proof on the spot

without much difficulty.

In this article, T like to present a method of proof
which T think is the most suitable one at this level. 1In
choosines a suitahble method of proof, I have been puided by
the followine points
(1) Students are ,in reneral, weak in abstract concepts.

(2) Yo use should be made of concepts which are not in the
.syllabus. (For exaﬁnle, the proof given by J. A. Green

[1] is not suitable as it makes use of the homomorphism

theorem.)

(3) It is preferahble to have a lonc but intelligible proof
rather than a short hut difficult proof. Students are
auite prepared to follow a lone chain of carefully
reasoned steps.

Thus, to overcome the abstractness of whatever nroof we
present, we could first make the proof more “concrete' ty
provinos the theorem for one particular case before giving the
~eneral proof. T estimate that should T prove it renerally
at once, abhout 20 per cent of the students would understand it
whereas if I prove a narticular case and then seneralize, 85

to 30 per cent would understand it.

This method of nroof is siven by Frank Ayres, Jr [2 ] .
Moreover, in this proof there is only one step which is not
easily understood hy students : if G = { gl,gz,...,gJ is
a “roup with respect to the operation % and pj is the
permutation
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g, g, g robowe g,
glﬁ';gj ng.'ggi gn*g
where gj € G, then p; can also be written as

gl*gk gZ*gk . o B gna':gk

'Ij
1

(glkgk)*gﬁ (gz*gk)*gj tég*gk)*éj

for any ~iven g, in G.

To convince students, we first give~an examnle to show
that in the expression of a permutation, the orderinc of the

columns is not important
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Next, we point out that the columns and rows of a group
multiplication table satisfy the Latin square »roperty. That
is, each row (or column) contains all the elements of the group

without repetition

.’<'§ gl gz . . . gk e . ° gn
&1 E1%8y
89 8o%8y
&n En*8).

These two ohservations will convince the students of the

anIE 3
validity of the second expression for D: -
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et us verify Cavyley’s theorem in the case of a par-

ticular group G with the following multiplication table



s §1 87 B3 B Eg &g
g1 1 B2 f3 8, 85 &
€ €2 81 Fg Bg B3 By
€3 83 % €1 Fg 8y &9
Ey By 85 8 & Fy &3
gs €5 & B8, 83 B £ :
g6 8 83 &3 £y By Bg

Using the previous notations, define

81 €, e g

g,%8g g)*8g e o+ Bg*Bg

. Or write it simply as

pg = (156) (234)

Thus we have the permutations

Pq * (1) s Py = (12) (36)] (45 ,
Py = (13) (25) (u46) s Py = (14) (26) (38) ,
Pg = (156) (234) s Pg (165) (243)

Form thetmultiplication table of the set F = { PqsPysP3sPy sPgsPg}
under composition of permutations
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Py Py PgiePy «Pg (Pg
P Py Fa. % Py by R
P2 Pp Py Pgiefg Py= Py
Py Py Pg P, P5 Py Py
Py Py Ps % By Py’ .83
Dg B /P, Dy Py B Dy
Pg Pg By By Pg. Py Ppg

Thus P forms a croup under composition.

Define the mapping & frem G to P by

(I(Q,i) = pi s i = 1,2,-.0,6 .

S ey e e : b = 1 .
It can bé easily seen from the table that a is one-to-one
and onto, and also preserves the binary operations. Ience

G is isomorphic to P.

We now proceed to give the general proof of Cayley’s
theorem.

Let G = {gl,gQ,...,gn} be a group under the operation # .

For each i = 1,2,...,n, define the permutation
gl gz e . . gn
Pj 2 s
glﬂgj gQ"gj 5 ° af gnc\gj

which we simply write as

Note that P. is a permutation on the n elements of G since
the elements in the second row occur in one column of a
multiplication table of G and hence run throuch all the
elements of G. We now show that the set



P = {pl’P2’...’pn} - /_

is a permutation croup on n symbols.

Let pj,pk e G.q Then
2y &;
pj OPk = O
gi*gj g; %8
g5 gi#gj
= O s
8;%8; (g;%85)ugy

by the remark mentioned earlier,

g;
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<gi*gj)*gk

o

by the associatiVity of = ,

=P
8;%gy i~y

where gj*gk =g for some gy € G. FHence P'is closed under
composition.

Composition is associative and the identity element is

g3 & g,

* The inverse of & is 1
2 -l

g4 8i"gj gi*gj
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(@] = O
S . 1 4
\gi»gj) glxgj/ 81%8; ) (g;#g;)%g
g5 g; €;
" % o .‘1 : Lo o «1 3
\(gicsgj).xgj giu(gj-\gj ) gi
Similarly,
/
g\ £5 €4
O =
s8I g; % \g
e \Bi™"8; i/

Thus P is a group under the operation of composition.
Define the mapping o from G to P such that

(X.("fi) = Pi 9 i = 1,2,...,1'1 .

Moreover, a is clearly one-to-one. To show that o preserves

the groun operations, we have

loiBg g \
a(g.,) o algy) = L o

one) \ases,
& [ Gi*an g5
& %8y (8;%8y,)%8¢ (8;%8,)%8g
83

= olg #g.)
g %g
Hence o is an isomorphism from G onto F.

T would like to mention that I tried this method on
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my students at the National Junior College with satisfying
results.
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