THE STORY OF THE CENTRAL LIMIT THEOREM

Loh Wei Yin

The central limit theorem (CLT) occupies a place of
honour in the theory of pfbbability, due to its age, its
invaluable contribution to the theory of probability and
its applications. Like all other limit theorems, it
essentially says that all large-scale random phendmena in
their collective action produée strict regularity. The
limit law in the CLT is the well-known Normal distribution
from which is derived many of the techniques in statistics,

particularly the so-called "large sample theory".

Because the CLT is so very basic, it has attracted the
attention of numerous workers. The earliest work on the
subject is perhaps the theorem of Bernoulli (1713) which is
really a special case of the Law of Large Numbers. De
Moivre (1730) and Laplace (1812) later proved the first
version of the CLT. This was generalized by Poisson to
constitute the last of the main achievements before the

time of Chebyshev.

The theorems mentioned above deal with a sequence of
independent events 51,52,53,..., with their respective
probabilities denoted by s P(En). The number of actually
occurring events among the first n events 51,...,£n is
denoted by the random variable Zn' The above-mentioned
results can now be stated as follows. (The first two theorems

have p = p for all n, and 0 < p < 1.)

s Bernoulli's Theorem. For every & > 0,

P(iﬁgl— pl>e) =+ 0 as n > ®
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35 Laplace's Theorem

Z_ - np
PLz 1

A T S Sk Y ®(22) - 8(z.)>
\/np(l—p5 =

as n -+ » uniformly with respect to zl'and zZ, -

We have used the notation

d(x) =

which is the standard Normal distribution function.

34 CLT in Poisson's Form
- 2 - ¢ :
Let An = pl+...+pn, Bn = Pl(1~~pl)#...4~pn(1—pn).
Then :
. |
P(z1 < 3 < zz) > ¢(22) - ?(zl)

n

as n » « uniformly with respect to zq and zé.

If we introduce the indicator random variable

g 1 if £ occurs

& LadD if £ does not occur,

Zn can be written as

Thus the above three theorems are in fact special cases of

limit theorems concerning sums of independent random varic-lecc.
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The rigorous proof of the more general CLT for sums
of arbitrarily distributed independent random variables was
made possible by the creation in the second half of the
nineteenth century of powerful methods due to Chebyshev,
whose work signalled the daWn of a new development in the
entire theory of probability.

Chebyshev considered a sequence of independent random

variables Xl’ L A Xn"" with finite means and variances,

2)
N g 2T - & 2
denoted respectlyely.by a = EXn, bn E(Xn an) . Let

% , % N 2
Sn - X1+.-n+ Xn, An a.l +00n+ an)and Bn b1+.-o+ bn .

Chebyshev studied and solved the following problem.

~ Problem. What additional conditions ensure the
validity of the CLT:

S -A

P( g D¢ z2) » o(z)
n

for every real z as n + »?

To solve this problem, Chebyshev created the method
of moments. . His proof, in a paper in 18390, was based on a
lemma which was proved only‘later by Markov (1899). Soon
afterwards, Lyapunov (1900, 1901) solved the same problem
under considerably more general conditions using another
method, although Markov later showed that the method of
moments is also capable of obtaining Lyapunov's theorem.
However, it turned out that Lyapunov's method was simpler
and more powerful in its application to the whole class of
limit theorems concerning sums of independent variables.
This is the method of characteristic functions using
Fourier analytic techniques. It is sc powerful that to
date no other methcd can yield better results for the casec

of independent random variables.

The condition Lyapunov used to solve Chebyshev's

problem was

e = T



2+8

lim C /B =30 3
n-oo
where C_ = c. +...+ ¢c_, ¢, = E|X, - a ]2+6 for some 6>0
PR Ry Lo e e R el :

An even weaker condition is the famous Lindeberg
condition that for every §>0.

n : ;
1 ) I x2dF, (x+a, ) = 0,
n+e B2 k=1 :

n |x|2€B_

where F, is the distribution of Xy »

(1937) showed that the Lindeberg condition is not only

Subsequently Feller

sufficient but also necessary for the limit law to be
normal, provided an appropriate uniform asymptotic
negligibility of the Xi/Bn is assumed.

In practical applications the CLT is used essentially
as an approximate formula for “sufficiently large values of
n. In order that this use is justified, the formula must
contain an estimate of the error involved. One way of
doing this is to consider the various asymptotic expansions
for the distribution |

Sn-An ;
F. %) .3 B¢ B <o),

' In his 1890 paper Chebyshev indicated without proof the
- following expansion for the difference Fn(x) - &(x), when

the random variables are identically distributed:

Q. (x)A_ Q, (%) Q.(x)
F_(x) - 8(x)~~ e 3 e""ixz( 1 (detie —3—-+>
i

e T + R T nj/2

n n

where the Q (x) are polynﬂmlals The most definitive result:s
in this dlrectlon are due to Cramer. Edgeworth (1965) studied
in detail the expansion in a slightly different form.
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“'When the random variables are: identically distributed
and possess finite third moments, Berry (1941) and Esseen
©(1945) independently proved the celebrated result

K B
|Fn(x) - ?(}F)f g‘—3fz‘ s

ST

%

sy of

Exi,; (BXl)z-and K is a constant.
Later results have generalized this to the case of non-
~ identically distributed summands with the best. bound

‘achieved by Esseén (1969) in terms of truncated third

~where B = Etxl—Exlla,,qz

’moments.'

: A natural questlon generated by Lyapunov's CLT is

whether the condltlon that the random variables be independent

can be generalized. It was forty-seven years later -before

Hoeffding and Robbins (1848) proved a CLT for an m-dependent

sequence of random variables. (The concept of m-dependencs

?‘essenfially-requireS‘that.given the sequence'Xl,Xz,...,X i
it is m-dependent if (Xl’XZ""’Xr) is independent of

(X ,XS+1,..

sequence is 0O-dependent.) Later Diananda (1955) and Orecy

.) for s-r>m. In this terminology an independent

(1958) improved on this result by assuming only Lindeberz's
‘condition and the boundedness of the. sum of the individual
variances.

Almost at the same tlme, Rosenblatt (1956) proved a
CLT for a'”strong m1x1ng sequence. This condition requiras

.only thaL the dependcnce between Xn and X diminishes a:=

+X
X 1ncreascs. Thus m- dependence is 1nclud2d as a specizal
case. Rosenblatt S results were subs;quently improvec bv

: Phlllpp (1059a, 1969b; who not only relaxed the form\r‘*'
.condltlons but also obtained bounds for the error in th=
normal approximation. Soon after, in the Sixth’Berkel;y

- Symposium. Dvoretzky (1972) presented very general results
for dependent random variables. TFor the particular cas=z

of -strong mixing, he went beyond Philipp's (188%a) thecren
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by dropping the condition that the variables be uniformly
bounded. In this connection, the author and Chen [22]
have added a refinement to one of Dvoretzky's theorems.
Recently too, McLeish (1974) has made improvements on

Dvoretzky's paper.

At the same symposium in which Dvoretzky presented
his results, an equally interesting paper was given by
Stein (1972). This paper is concerned with bounding the
error in the normal approximation for dependent random
variable. Its significance lies not so much in its improve-
ment of known results, which it did manage handsomely, but
rather in its introduction of a new method vastly different
from the established Fourier techniques. The method, which
makes no use of characteristic functions, essentially

depends upon an identity and a perturbation technique.

The interest created by Stein's paper was almost
immediate. Chen (1972) used it to give an elementary proof
cf the CLT for independent random variables while Erickson
(1974) obtained an L, bound for the error for m-dependent
sums. The latter has since been generalized by the author
and Chen i}l] to ¢-mixing sequences. Chen [97) has
meanwhile employed a variation of Stein's method to obtain
ﬁécéééary‘aﬁd sufficient conditions for the dependent
central limit problem where the limit law need not be
normal.. In the case that the limit is normal, {he author
and Chen [?2} have improved on the existing results for
strong mixiné sequences. AlthoughASteiﬁis method appears
to be more easily applicable to dependent random variables.
the classical Fourier method_is'stili Superior for independent
variables.  This is because to date no one has been ablec tc
apply Stein's method to yield the classical Berry-FEsseen
theorern. |

In yet another direction of generalization, Markov
was among the first to.prove a multidimensional CLT, wharse

the sequence of random variables is now a sequence of



independent random vectors. The limit law then becomes the
" multidimensional Gaussian distribution. Apart from the
extra work of dealing with matrices, the preof of the
multidimenSional;CLT.eppegfs‘fo be a simple extension’ of

the one-dimensional case.

The corresponding problem of bounding fhe error in the
multi-dimensional CLT is more interesting. Among the first
to look for estimates was Rao (1961). He was closely
followed by a host of others, malnly Ru551ans, like Bikjalis
(1966), von Bahr (1967), Bhattacharya (1968), Sadikova (1968)
Sazanov (1968), Bergstrom (1269), Paulanskas (1970) and
Rotar (1970). ‘With'the exception of the last two, all the
authors mentioned above considered only rindependent and
“dentically.distribﬁted random vectors. The last two
dropped the assumptlon of identical dlstrlbutlons. When .

third moments ex1st, an order of n %

is obtalned which is
equivalent to the Berry-Esseen rate. However, this is
only possible for the claes of convex Borel sets. In fact,
Bikjalis (1966) has shown that for arbitrary Borel sets,

additional conditions had to be assumed.

_ ThlS is therefore the present situdtion regarding
developments in the study of .the CLT. There are still
many nagglng questions left to be asnwered, particularly
in bounding the error in the normal approximation. By
considering coin-tossing, it is seen that the rate given
in the Berry—Eeseeﬁ theorenm is achieved and hence further
work on this may only be found in reducing the absolute
constant. A more challenging problem is to obtain a proper
generalization toldepeﬁdent variables. So far, all
estimates, with the eyception‘of that of Stein (1872), do
not reduce to the Berry-Esseen rate. Stein (1872) obtained
the correct order of n -’ for a sequence of stationary
n-dependent random variables with eighth moments. The

%

others manage at best an order of n (see e.g. Philipp
(1969b), Erickson (1974), Loh and Chen. [?;} ) for more

general types of dependence. Another problem awaiting
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-future research is to get bounds for the correspehdidg
multidimensional casec for dependent random vectors. Thewe

does not appear to have been any work on thls problem yet

Work on the CLT has generated much 1nter°st in &
related problems like the Poisson approxlmatlon and the
Central Limit Problem. Wlth the latter are a55001ated SOM2,
of ‘the great pioneers in probablllty like Levy, Khitchine
and more recently, Kolnogorov. To retrace thelr work wou;d

require another essay as long as the present.

It is perhaps justlfled to add that no other topic in
the theory of probability has attracted 80 mucb attentlon
for so long as the Wit For two hundred and fifty years
since its birth, the CLT has held‘man'e.fgscination_and will

continue to do so for many. years to come.
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