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Hathematical research is not something mysterious. 

Everyone can do it. To prove my point, I shall give two 

examples. 1~e first one concerns magic squares, and the 

second one doodling. 

Our problem is how to construct a mag1c; square of size 

100 by 100. For those who are interested in: the history of 

the subject, there is a short but nonetheles~ comprehensive 

account of it in [1] Recently, this has b~come an active 

research topic. For soD<;; nev,1 results, see, for example,[2]. 

Here we try to s~ow how we may proceed frau special to 

general and hen6e deVise a way of constructing the magic 

square. 
i'" 

Let us begin with 3 by 3 mag1c squares. It is well-

known that there is only one, namely the following 

2 9 4 

7 5 3 

6 1 8 

For 4 by 4 ~ we simply write dm.Jn 1 to 16 in the order shmm 

on the left hand side b~low. Then we -reflect the diagonals 

and the resul-t is a Lf by 4 magic square as shm·m on the 

right be lmoJ. 

1 2 3 4 16 2 3 13 

5 6 7 8 5 11 10 8 

.9 10 . 11 12 9 7 Q 12 

13 14 15 :16 4 14 15 1 

*This is the text of a public lecture delivered on 
28 August 1975. 
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Note that any ro~, any column or ariy of the -t-wo diagonals 

all add up to 34. · Vie sometimes call 34 the rr.agic number 

for the ma g ic squ~re. It is very easy to find the magic 

number for a magic square. We simply fill up the square 

as we did on the left aboveithen add up the diagonal. For 

example, the magic number for a 5 by 5 rr.agic square lS 

1 + 7 + 13 + 19 + 25 = 65. 

( 2) 

(1)~ ~ 
l 2 3 

6 7 8 

' (4)--+ 11 12 13 

16 17 18 

21 22 23 

4 

9 

14 

19 

24 

5. 

10 

15 

20 

25 

( 3) 
J/ 

Further note that all the row, column and diagonals having 

13 add up to the same sum 6 5 . \rJhen we ;rearrange the 

numbe~s vle shall keep them together. Take out the arrays 

of numbers (1), (2), (3) and (~)and replace them as 

follows. 

. 
15 "' 21 4 23 · L 

6 14 17 18 10 

25 19 13 7 l ~ (l) 

16 8 9 12 20 

3 22 I 5 24 11 

/"' r : ~ 
(2) (4) 

(3) 

Hence we have obtained a 5 by 5 maglc square. 

~'Je may carry on, , arid it seems to get harder each time. 

\'7ri te dmm a 6 by 6 square and rev~rse its two diagonals. 

We have t he following: 
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36 2 3 4 5 :n 
7 29 9 10 26 12 

13 14 22 21 l''"' - I 18 

19 20 16 15 23 24 

25 ll 27 28 8 30 

6 32 33 34 35 1 

+5 +3 +1 -1 -3 -5 

+30 

+18 

+ 6 

.• 

-· 6 'differences from 
... 18 the magic number 
-30 111 

~ 
We no~e thcit the magic number is 111. Let us find the sum 

of each ro··J or column and its di{ference from the magic 

number. ~e see t~at all we need to do is to interchange a 

number in the first row >\'i th a number in the last row 

(except tho~e on t~42 diagonals), and similarly for the 

second row and fifth row, third ro~ and fourth row. We 

should also do the same for th-e columns. This can be done 

by interchanging the following: 

5 35 7 12 

9 27 ' 20 23 

13 19 33 34 
,_. 

The result lS a 6 by 6 maglc squal?e· 

36 2 3 4 35 31 

12 29 . 27 10 26 7 

19 14 22 21 17 18 

13 23 16 15 20 24 

25 11 9 28 8 30 

6 32 34 33 5 1 

-i ~-

Before r.-Je go further, let us pause and :study the 6 by 

E magic square more carefully. First, we wri~e · 
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1 2 3 4 5 G 

7 8 s 10 11 12 

l':l 
" 14 15 16 17 18 

19 20 21 22 23 24 

25 26 27 28 29 30 

31 32 33 34 35 36 

+15 ~g +3 -3 -s -15 

+54 

+18 

-18 

-54 

-90 

SupDose we work out the sum for each row and column and 

find its difference from the magic number. Obviously, all 

"Je need to do is to interchange threE: numbers between 

corresponding rows anct columns. In fact, this was what we 

did before. Note that we interchanged 8 with 29, and ll 

witn 26. The effect is equivalent to interchanging two 

numbers between two corresponding rows and tHo correspondins; 

columns. 

Now we have a procedure of construc~ing any even eagle 

square. First we write down the square as we did before. 

Work out the magic number and the diffe rence from it for 

the sum of each row and each column. Decide on the number 

of entries we need to interchange and finally devise a 

scheme to interchange them. The reader may wish to try 

this himself for a 10 by 10 maglc square. To construct a 

100 by 100 magic square, we proceed as before and find that 

-e need t o inte rchange 50 numbers between the correspondin:s 

~mvs - nd c o lumns. This may be done by dividing the square 

_: ntc che f , ; llowin g blocks: 

25 25 25 25 
<·--:- +•---+• +•--· 

2 s 1 r--- -~- -.- II 

IV 25 11 ! III 
+------+------+------+------4 

2S T I .. ,_ I 
+------+------+------+------4 

·': ~ I 

?.s t 1 iJII i jviii 
~~----~------~-----J 

\I T ; .c. 

1 1 0 



... "1en ir.terchange diagonally block 

VII, III with VI, and IV with V~ 

l with 10000, 2 wfth 9999 ~nd etc. 

I ~ith blo6k VIII, II with 

For example, we int~rcha~~e 
Iri fact, this s6hem~ 

works for any 4n by 4ri : ~agi6 squares. aence we have sblv~~ 
the first problem 1n a surprisingly .. easy way. 

We all doodle. :The 1 que:stion is what mathematics, if 

any, vJe can get out _of doodling •.. Let us assume that we 

draw only vertical and horizontal line~. We ah.;rays make 

full turns and come back !to the original point. For 

example, the following are two different designs of making 

two turns. 

. ' . ' ' ; ,' ;• 

Tf H<' keep noo<'l1ing, we find that the above are the. only 

tHo designs ~e can ha~e 'to~ . two turns'. The fir$_t , .one has 

four ~nclosed a 'reas ' ( ,3 blacks and L white) and the second 
; 

one two only (1 black and 1 white). 

If we make three turns, either we keep crossing when­

ever we can or we try to avoid it whenever we can. The 

former gives 1 + 2 + 3 + 4 = 10 crossings, whereas the 

latter only 2. 1-Jhenever . we cross once,·we obtain an . 

enclosed area. When we complete the doodling we add an 

extra area. So we have the following so-called doodling 

theorem: 
.. 

The number of enclosed areas is equal to the 
number of crossings plus one~ .. 

Therefore} if we make three turns, the maximum number of 

enclosed areas .,we can ·have is 11 .and the minimum is 3. 
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We can generalize th.~s to any number of turns. ' The ' 

minimum case is easy. Let the number of turns be n . · · Then 
~·· ' . 

the minimum !J.umber of areas is also ri. For the maximum ' r 

case, let us study the following table: 

turns maximum • maximum . 
crossing areas 

l 0 l 

2 l + 2 4 

3 1+2+3+4 11 

4 1+2+3+4+5+6 22 

5 1+2+ ... +7+8 37 

Therefore the max~mum number of areas is 

1
ll + 2 + 3 + 4 + • • • + 2 ( n -l) J + 1 

2 ( n ; 1 ) [2 ( n -1) + 1 J + 1 · 

3n 2 - 3n + 2 

Another question we may ask is how many different 

designs there are for three turns. I have found 16 of them 

(see Appendix). A research problem is the -following. Can 

you find another one which is different from th~ sixteen 

or can yoti ' ~how that you cannot? 
'1,' .·,;· 
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