Rgain, it can be cbserved that Table 4 is an alternative
form of Table 6.

The readers mav try to prove the dualsof the ahove two
examnles, namely,

AN (BuC) = (AnB) v(ANC)

and
(A AR =apty BY,

which are ohtained hy interchanginc v ard N\ .

TrxthhkkhkhkhdkbhhkAh ekt hdh ki hhk

When G.M, Hardvy visitéd S. Pamanujan he told him that the
number of the taxi in which he came, 1729, loocked rather umattr-
active. Ramanuijan immediatelv denied this, saying that it was
the least number which could he exnressed as the sum of two
cubas in two:different wavs ; that is, 1720 = 12% + 13=10%4 o?
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EQUAL LIKELIHOOD AND INDEPENDENCE

Touis H. Y. Chen
Devnartment of Mathematics
Universitv of Singapnore

1. Introduction. The notion of equai likelihood is, in some

sense, closelv tied with that of independence in the Theorv of
Probability. Often this fact is aither overlooked or insuffic-
ientlv emphasized in the teaching of elementarv conrses. Thie

is perhars due to the diffiéulty in making the relation hetween
the two notions rrecise at the level concerned. PFowever, a dood
understandinag of the relation is necessarv in order to exnlain the
ecquivalence of two methods which are often emoloyed in the
solutions of a larce number of elementary n»nroblems.

To illustrate the last point, consider the followina simnle
example: 2 fair coin is tossed, a fair die is rolled and a kall
is drawn at random from an urnr containing ? black and 8 white
halls, What is the probabilitv of the event that the coin falls
heads, an even number appears on the die and a white kall is
drawn? One method of solution is as follows: Cince the samnle
space consists of 2x6x10 = 120 ecquallv likelv ocutcomes (each of
which can he represented by a trinle such as (Head,5,black hall))
and the event consists of 1x3x8 = 24 outcomzs, it follows that
the probahility is 24/120 = 1/5., 2lternatively, one could first
calculate the prokabilitiecs of the coin falling heads, of an

(21)




even number appearing orn the die and of a white ball heing
drawn, which are 1/2, 1/2 and 4/5 resvectively. Then one
could use indevendence to conclude that the nrobahility of

the event is (1/2)x(1/2)%(4/5) = 1/5. The two soclutions

just discussed employ differaent concepts. It is not immediat-
ely clear that thev shculd ke ecuivalent. Moreover, what is
the underlving sample space in the second solution?

The following is an attempnt to answer these cuestions in
elementary terms. Some bhasic knowledge of Probahilitv will

~;=b@;assumed. The relation bhetween ecual likelihood and inde-

pendence will bhe stated in two forms which will bhe proved as

two theorems. In order to show that the usefulness of the
theorems is not confined to the oresent discussion, one of

them will he applied to obtain a simpler proof of an interestinc
lenma in [X] , op. 102 - 193, |

2a Equal likelihood and independence. Verv often, the
experiment of interest consists of a number of other experiments.
Such an experiment is-a cdmpound exneriment. In the akove
example, the commound experiment consists of three experiments,
namely tossing a coin, rolling a die and drawinc a ball from

an urn.. Let Q;,...,Q be the sample svaces of n eRperiments,
say ?q,...,'gb. The natural sample space of the compound
experiment conéistinq of these experiments (denoted by
ng...XEh) is the FarteSLan oroduct ;X . XQ {(w1...-,w )=
Wi Q, T SR . An event in the comnounﬁ axveriment

l .
ti% ... %_, which is of ‘the form Q;%... KAX X Q where .

0
A, = Q., is called an event referring to the = experiment

Ei : 1= ,40.,n. It.ds said 6 occgP’if-and only i€ A. occurs

i
in the i N experlment'ﬂi. In the present discussion, all
sample svaces are assumed to be finite, i.e. all experiments

are assumed to have a finite number of ocutcomes.

Let Pi he the prokabhilitv associated with the exneriment

; i=1l,...,n. The cuestion arises as to whether there exists

Y .L
a2 prokabilitv P associated with the compound experiment

Zix-e-x €0 which has the following nroperties:

(2:1) P(Ay) =P;(2y), Ry% 9, 1=1,...,0,
and _

o isa o5 ~
(2.2 () A)= .|l P&, rié Q40 i=l,...,n ,



The oroperty (2:1l) is essential in order that P is meaningful,
whereas the property (2.2) stioulates the independence cf
3&,...;?# for anv Aiég Qi' T R e i I loose sense, (2.2)
says that the experiments 7?1,..,,‘6h are indevendent. Moting
that F\’? = FiX. X A and that {{wi,;.cen )} = {wy)x. . ox{n )}

{=1 * n n n’)
one immediately sees that such a prohabilitv P does exist.
Indead, it is given by

0

(2.3) P({(u1,..c0 ) = e (o1, (@1yeee,0)e Qxooxe .

Ffurthermore, it is unicue. The reader is advised to verifv
that the probhahilitv P given kv (2.3) is the onlv vrobability
associated with Tax...x<_, which satisfies (2.1) and (2.2).
The probability P given bv‘(2.3) is called the nroduct prohbab-
ility of P1,---,Pn and is denoted hv P1X...X'Pn .

A prohability is said to he uniform if it attributes eaual
probabilities to all the .cutcomes in the associated sampole
space, i.e. all outcomes are caqually likely. Similarlyv, a .
random variabhle or a random vector is said to have a uniform
distribution, if all its values hav2 eaqual probabilities. The
theorems are now stated and proved as follows:

Theorem 2.1. Tet Ql,{..,Qn be sample spaces. If the
probakility Pi associated with Qi‘is uniform, i=l,...,n, then
the Droduct_probabi;ity PLX...XPn associated with le...xnn
is uniform. Conversely, if a probability P associated with

- Q;',,.Vﬂn iz uniform, then there exist unique prohabhilities

P;' associated with Qi' =1, .3 a9y such that P=~ﬁ’x...XP;’.'

- z :
Mcreover each Pi must necessarily be uriform.

Proof. Let Qi conegist: of ki ocoutcomes, i=l,...,n. The

uniformity of P, implies that

Pi({wi}) = 1/k Vel S £ et T L SRR |

s 1 T

Thus for everv (w;,...,wn) B =Ry Qn .- wa have

P;x...XPn.({(w1,...,wn)})

= PIX.;.XPn’({wl}X...x{wn})

pri({wi})'= L e

This proves the uniformitv of PIX...XPn
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Convercely, suppose P is uniform. Then for everv weE Ry
w2 have

P(Q]_xo . ox{wi}*. . O?Qn) ’

ZP({(w;,...,wn)})

Zl/k,...kn = 1/k;

where the summation is taken over the set Q,x...x{ml}x.,.xgn
o aiw / .
and J.':'l goee ,n . Define Pi bv

i o) = P‘“‘*‘°'”{“i}x-"xﬂn{'“1€ Qg i=l,...,n.
Clearlv P)° is uniform. Now

P(AgX...XA )

Z P({(wx,-.-'mh})

n
n
= Il/ki...v = TON(A) /Ky
i=1
- 3 P’ ta)

where the summation is taken over the set Ay ... A and

(Ai) denntes the number of elements in the set Ai,i=1,...,n.

Thus P=PIX...XPn. Let Pi“ he another nrohability associated

with Qi' £ =0y sugh-tHat P is=byiwi 2R Pn"'

Then for averwv AiC S,

P(le"'xAixoo.xQn)

]

P; (Q1)...Pi"(Ai)...Pn"(Qn)

= P, "{K }5

:f i
. i
This proves the unicueness of P, . Hence the theorem,

In a loose sense, Theorem 2.1 savs that the out¢omes of

a comoound exrariment C;X...xfn are amallv likely if an? onlv

if the exneriments 'ﬁh,,,, an are independent and the outcomes
of each éi are equally likelv. ™his oronertv carries over to

random variahles. In fact, it will ke more vividlv exhibited
in terms of random variables and will not derend on the
structure of the underlving samnle space. The next thecrem

illustrates this poirt.
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Theorem 2.2.. Let x1""’xn be discrete random variables
defined on a samvle space Q. The random vector (X1,...,xn)
has a uniform distribution if and only if X;,...,xn are

independent and each X, has a uniform distribution.

i

The proof of this theorem ig similar to and even simpler
than that.of the precedina thecrem. Tt is therefors left to
the reader.

3. Arpiications, In order to explain the emiivalence of
the two maethods of solution in the ahove example in the proner
context, it is necessary that the same sample space, namely
Q= le...XQn (in this example, n=3) must be used in hoth cases.
In the first method, eaual likelihood of the outcomes in Q is
assumed, This is the same as assuming the prohahilitv
associated with Q, say P, to be uniform. Let Pi he the
nrobhahility assoclated with Qi' i=l,...,n. In the second
method, the probakility associated with Q@ is actuallv the

product prohability Pyx...xP_ with each P, assumed to bhe

: 8
uniform. Ry Theorem 2.1, P = P1X...xPn. This proves the

cecmivalence of the two metheds.

A simpler proof of a lemma in [17],pp.102-193, will now be
'discussed. Tet  be the sample snace of all n! distinct
pefmutations (al,...,an) of the inteacers (1,...,n), where each
permutation has orohabilitv 1/nl. For each i, i=1l,...,n, and
each w = (a;,...,an) efR , let xi he the numter of "inversions"
caused by i-inw, i.e. 'xi(m) =m if and onlv if i orecedes
exactly m of the integers 1,...,i~1 in the nermutation .

Tha lemma states that the random variables X1,...,Xn are
independent and each xi has a wniform distributior, i.e.

P(X, =m) 1/4;, O%'ms i -1, 1£'=1,...,n.

This result is far from bBeing obvious and is difficult to nrove
directly. Rut,in view of Thecrem 2.2, one only needs to show
that the random vector (Xl,...,xn) has a uniform distribution.

Tndeed, it is not difficult to see that the manving defined bhv

— A

(al I“"'!an) H.(xl(w)’oﬁopxn‘w)) fOI‘ ever‘!w= (alyao.,an)eﬂ

is one-to-one and onto from ' to E%xxﬁxu..xNh 1 ? where

P — T T

e =

Ly {0, 1,...,£F, i=1,.7¢,n-1. “Thus for everv value (c,,...cn)

of (Xl r--o.-xn)r we have P(X, = o] ;.--,Xﬁ= Cn).= l/!!!

e T

This oroves the lemma,
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